GCSE Mathematics Knowledge Organiser

Algebra	Page
Algebra Fractions	14
Area under curves	42
Change the Subject, Rearranging Formula	$9,11,13$
Cubic Graphs	37
Expanding brackets	$6,8,11,14$
Exponential graphs	38
Factorising expressions	6
Functions	14,15
Gradient of curves	42
Index Rules	8,12
Inequalities	$16,17,22$
Linear Graphs	$24-29,31,32$
Numerical Methods of solving equations	21,23
Quadratic factorising, solving	$12,18,19,20$
Quadratic graphs	28
Reciprocal graphs	37
Sequences	$33-36$
Simplifying algebra	5
Simultaneous equations	$17,18,20,21$
Solve Linear Equations	16
Speed/Time and Acceleration/Time graphs	30,31
Substitution	$6,7,9,10,11$
Transforming Graphs	39,40
Trigonometrical graphs	38

Geometry and Shape	Page
3D shapes	75
Angles	$43-49$
Area of shpaes	$58-60,72$
Bearings	50
Circle Theorems	73,74
Circles	70,71
Congruence	48,51
Constructions	$81-83$
Loci	84,85
Nets	$75,76,77,79$
Perimeter	58
Plans and Elevations	76
Pythagoras theorem	86,89
Similarity	$49,51,122,127$
Surface area	$76,78,79,80$
Symmetry	53
Transfroming shapes	$54-57,64-69,72$
Trigonometry	$87,89,90,91$
Vectors	$87,88,92$
Volume	76,78

Number and Proportion	Page
BIDMAS	94
Bounds	105,106
Calculate with units of measurement	103,104
Calculators	96
Compound Measures	105
Conversion graphs	119,120
Converting Fractions, Decimals and Percentages	$98,99,100$
Decimals	94,95
Division	93,94
Factors	107,108
Fractions	$97,98,100$
Highest Common Factor (HCF)	109
Lowest Common Multiple (LCM)	109
Multiples	107,108
Multiplication	93
Negative numbers	95
Percentage change (repeated)	123,125
Percentages	$99,100,119,120$
Place Value	93
Powers and indices	$107,112,113$
Prime numbers	$107,108,110$
Proportion	$117,118,122,124$
Rate of change	126
Ratio	$117,118,119$
Recurring decimals	101
Rounding	102,103
standard Form	$110,111,115,116$
Surds	$113,114,115$

Statistics and Data Handling	Page
Data collection	$128,133,135$
Tally Charts and tables	128
Bar Charts	129
Pictograms	129
Mean	$130,136,139$
Mode	$130,137,140$
Median	$131,137,140$
Range	131
Compare Data	131,134
Stem and Leaf charts	131
Pie charts	132
Quartiles and interquartile range	133
Two way tables	134
Grouping data	136
Frequency Polygon	136
Scatter graphs	$137,138,139,140$
Cumulative frequency charts	140,141
Box plots	142
Histogram	144,145

Probability	Page
Probability	145,150
Relative frequency	146
Tree diagrmas	146,147
Sets and Venn diagrams	148,149
Conditional probability	150
Combinations and Permutatiosn	151

A1: Algebra Notation

Plot Coordinates
Collect Like terms
Simplify Expressions

	(x coordinate, y coordinate)
Plot coordinates in four quadrants	For x, move right for positive values and left for negative.
e.g. Plot the origin $(0,0)$	For y, move up for positive values and down for negative.
Plot the point $(2,3)$	e.g.
Plot the point $(-1.5,-2.5)$	

A1.2	Only like terms can be added
Collect like terms by adding and	or subtracted.
subtracting	e.g. $a+2 a=3 a$
$\begin{aligned} & \text { e.g. } \\ & a+2 a \end{aligned}$	$a+2 b$ cannot be added
$a+2 b$	$5 \mathrm{a}^{2}-2 \mathrm{a}^{2}=3 \mathrm{a}^{2}$
$5 \mathrm{a}^{2}-2 \mathrm{a}^{2}$	$\mathrm{a}^{2}-2 \mathrm{a}$ cannot be subtracted
$\mathrm{a}^{2}-2 \mathrm{a}$	
A1.3	Terms can be simplified when
Simplify simple	multiplying.
expressions by multiplying	Multiply any numbers first, then write the letters including any powers that result.
e.g.	
$a \times b$	$\begin{aligned} & \text { e.g. } \\ & \mathrm{a} \times \mathrm{b}=\mathrm{ab} \end{aligned}$
$2 \mathrm{a} \times 3 \mathrm{a}$	$2 a \times 3 a=6 a^{2}$

A1: Algebra Notation

Expand a single bracket
Factorise into a single bracket
Substitute into an expression

A1.4	Multiply everything in the
Expand a single bracket	bracket by what is outside.
Expand $2(x+5)$	$x(x-5)=x^{2}-5 x$
Expand $\mathrm{x}(\mathrm{x}-5)$	
Expand and simplify expressions with more than one bracket	Expand each bracket and then simplify the expression. Take care with negative numbers.
e.g. Expand	$3(x+2)+2(x-5)$
$3(x+2)+2(x-5)$	$\begin{aligned} & =3 x+6+2 x-10 \\ & =5 x-4 \end{aligned}$
	$\overparen{3(x+2)-2(x-5)}$
$3(x+2)-2(x-5)$	$\begin{aligned} & =3 x+6-2 x+10 \\ & =x+16 \end{aligned}$

A1: Algebra Notation

Use a formula by substituting numbers
Expand two brackets

A1: Algebra Notation

Plot a linear graph from a sequence or formula Use the index rules for multiplication and division Use the index laws for raising to a power

A1.10	Deal with the numbers first.
Use the index rules for multiplication	When multiplying add the indices.
and division	When dividing subtract the indices.
$\begin{aligned} & \text { e.g. } \\ & 3 a^{2} \times 2 a^{3} \end{aligned}$	
	e.g.
	$3 \times 2=6$
	$\begin{aligned} & a^{2} \times a^{3}=a^{2+3}=a^{5} \\ & 3 a^{2} \times 2 a^{3}=6 a^{5} \end{aligned}$
$10 a^{6} \div 5 a^{2}$	$10 \div 5=2$
	$a^{6} \div a^{2}=a^{6-2}=a^{4}$
A1.11 Use the index rules for raising to a power	
	Raise any numbers to the power outside the brackets first.
	Multiply the indices when raising a power to a power.
	e.g. $\left(a^{2}\right)^{4}=a^{2 \times 4}=a^{8}$
$\begin{aligned} & \text { e.g. } \\ & \left(\mathrm{a}^{2}\right)^{4} \end{aligned}$	$\begin{aligned} & 2^{3}=8 \\ & \left(a^{6}\right)^{3}=a^{6 \times 3}=a^{18} \end{aligned}$
$\left(2 a^{6}\right)^{3}$	$\left(2 a^{6}\right)^{3}=8 a^{18}$

A2: Formulae, Functions and Expressions
Use a formula by substituting numbers Change the subject of a simple formula Expand two brackets

A2. 1 Use a formula by substituting numbers	Replace the letters with the given numbers, then carry out the calculation. Remember BIDMAS and the rules for negative
e.g. Use the formula $\mathrm{v}=\mathrm{u}+\mathrm{at}$ to work out v when $u=5, a=10, t=6$.	e.g. $\begin{aligned} & v=u+a t \\ & v=5+10 \times 6 \\ & v=5+60 \\ & v=65 \end{aligned}$
Use the formula $\mathrm{v}=\mathrm{u}+\mathrm{at}$ to work out a when $v=32, u=7, t=5$.	$\begin{aligned} & v=u+a t \\ & 32=7+5 a \\ & 25=5 a \\ & a=5 \end{aligned}$
Use the formula $\mathrm{v}=\mathrm{u}+\mathrm{at}$ to work out t when $v=5, u=17, a=-4$	$\begin{aligned} & v=u+a t \\ & 5=17-4 t \\ & -12=-4 t \\ & t=3 \end{aligned}$

A2. 2 Change the subject of a simple formula e.g. Make t the subject of the formula $v=u+a t$	Use the same balancing steps as when you solve equations to change the subject of the formula. e.g $v=u+a t \quad$ (Minus u from both sides of the equation) $\begin{array}{ll} v-u=a t & \text { (divide both sides of } \\ \text { the } & \text { equation by a) } \\ \frac{v-u}{a}=t & \end{array}$
A2.3 Expand two brackets. $\begin{aligned} & \text { e.g. } \\ & (x+3)(x-2) \end{aligned}$	Use a grid to expand two brackets. Take care with negative numbers. Add together the four terms in the grid. Simp e.g $\begin{aligned} & x^{2}+3 x-2 x-6 \\ & =x^{2}+x-6 \end{aligned}$

A2: Formulae, Functions and Expressions
Substitute into an expression
Use a function machine to find input and output

A2.4 Substitute into an expression.	Replace the letters with the given numbers, then carry out the calculation. Remember BIDMAS and the rules for negative numbers.
e.g. Find the value of $3 \mathrm{a}-\mathrm{b}$ when $\mathrm{a}=6$ and $\mathrm{b}=-2$.	e.g. $\begin{aligned} & 3 a-b \\ & =3 \times 6-(-2) \\ & =18+2 \\ & =20 \end{aligned}$
	e.g
Find the value of $a b c+3 b$ when $a=5, b=3 \text { and } c=7$	$\begin{aligned} & a b c+3 b \\ & =5 \times 3 \times 7-3 \times 3 \\ & =105-9 \\ & =96 \end{aligned}$

A2: Formulae, Functions and Expressions
Evaluate formulae in a calculator including fractions and
negative numbers
Rearrange formulae with fractions
Expand and simplify an expression involving brackets

A2: Formulae, Functions and Expressions
Factorise a quadratic expression where $\mathrm{a}=1$
Use index rules for multiplying and Dividing Use index rules for raising to a power

A2.9	Work out two numbers
Factorise a quadratic expression where $a=1$	that:
	Add to make the number in front of x ;
	Multiply to make the number on its own.
	Write each bracket with an x and one of the numbers.
e.g factorise $x^{2}+5 x+4$	Take care with negative numbers.
	$x^{2}+5 x+4$
	Add to make 5
	Multiply to make 4 $(x+4)(x+1)$
Factorise $\mathrm{x}^{2}-3 x-4$	
	$x^{2}-3 x-4$ Add to make - 3
	Multiply to make -4

A2: Formulae, Functions and Expressions

Rearrange formulae with factorisation

Simplify algebraic fractions by factorisation

A2: Formulae, Functions and Expressions
Adding/Subtracting Algebraic fractions
Multiplying/Dividing algebraic fractions
Expand Triple Brackets
Substitute into a function using function notation

A2: Formulae, Functions and Expressions

Find the Inverse of a function

Find a compound function

A3: Solving Equations and Inequalities

Solve Simple and two step linear equations
Solve Linear equations with brackets
Solve Linear equations with unknowns on both sides Solve a linear inequality

A3. 3 Solve linear equations with unknowns on both sides	
	e.g.
	$2 a+5=a+8$ (subtract a from both sides)
	$a+5=8$ (subtract 5 from both sides)
	$\mathrm{a}=3$
e.g.	e.g.
$2 \mathrm{a}+5=\mathrm{a}+8$	$4 a-3=2 a+11$ (subtract $2 a$ from both sides)
$4 a-3=2 a+11$	$2 \mathrm{a}-3=11$ (add 3 to both sides)
	$\mathrm{a}=7$
A3. 4 Solve a linear inequality	e.g.
	$2 x-4<2$ (add 4 to both sides)
e.g.	$\stackrel{x<3}{\longleftarrow}$
$2 x-4<2$	
	e.g.
	$3 x+5>11$ (add 4 to both sides)
$3 x+5>11$	$3 x>6$ (divide both sides by 2) $x>2$

A3: Solving Equations and Inequalities

Display an inequality on a number line
Solve Linear Simultaneous Equations

Make the number in front of the y the same by multiplying the whole linear equation.
$2 x-3 y=11$
$5 x+2 y=18$
(x3)

Add or subtract to eliminate y.
Same signs subtract.
Different signs add.

$$
\begin{aligned}
& 4 x-6 y=22 \\
& 15 x+6 y=54
\end{aligned}
$$

Solve the equation to find the value of \mathbf{x}.
$19 x=76$
$x=4$
Substitute the value of x into one of the equations to find the value of y.
$5(4)+2 y=18$
$20+2 y=18$
$2 y=-2$
$y=-1$

A3: Solving Equations and Inequalities

Solving simultaneous equations graphically
Solve a quadratic equation by factorising when $\mathrm{a}=1$

A3.7 Solving simultaneous equations graphically e.g. Solve	Draw the graphs of the equations. Find out where they cross. The solution is the coordinates of the intersection point.
y=2x+2 $y=x-1$	

A3: Solving Equations and Inequalities

Solve a quadratic equation by factorising when a does not equal 1
Solve a quadratic equation using the quadratic formula

A3: Solving Equations and Inequalities

Solve a quadratic equation by completing the square
Solve linear /quadratic simultaneous equations using substitution

A3.11	Write the equation in the form
Solve a quadratic equation by	$x^{2}+8 x-40=0$
completing the square	Write $\mathrm{x}+$ half the coefficient of x in brackets then square
e.g. Solve	$(x+4)^{2}-40=0$
$x^{2}+8 x-40$	Square and subtract the coefficient of x
	$\begin{aligned} & 4^{2}=16 \\ & (x+4)^{2}-16-40=0 \\ & (x+4)^{2}-56=0 \end{aligned}$
	Now solve by adding the constant to both sides
	$\begin{aligned} & (x+4)^{2}-56=0 \\ & (x+4)^{2}=56 \end{aligned}$
	Square root both sides
	$\begin{aligned} & (x+4)^{2}=56 \\ & x+4= \pm \sqrt{ } 56 \end{aligned}$
	Solve to find the two values of x
	$x=-4-\sqrt{ } 56=-11.48(2 d p)$ or

A3: Solving Equations and Inequalities
Solve linear/quadratic simultaneous equations graphically
Use iteration to solve an equation

A3.14	Input the value for x_{0} into the formula to find the value for x_{1}.
Use iteration to solve	$8-\frac{5}{1^{2}}=3$
an equation	$x_{1}=3$
e.g.	Input the value for x_{1} into the formula to find the value for x_{2}. $8-\frac{5}{=}=\frac{67}{-}$
Using 5	$\begin{gathered} 8-\overline{3^{2}}=\overline{97} \\ \hline \end{gathered}$
	$x_{2}=\frac{61}{9}$
$x_{n+1}=8-\frac{\mathrm{v}}{x_{n}^{2}}$	Input the value for x_{2} into the formula to find the value for x_{3}.
With $x_{0}=1$	$8-\frac{5}{\left(\frac{67}{9}\right)^{2}}=7.909779461$
Find the values of:	$x_{3}=7.909779461$
x_{1}, x_{2}, x_{3} and x_{4}	Input the value for x_{3} into the formula to find the value for x_{4}.
	$8-\frac{5}{(7.909779461)^{2}}=$
	7.920082617
	$x_{4}=7.920082617$
	$x_{1}=3$
	$x_{2}=\frac{67}{9}$
	$x_{3}=7.909779461$
	$x_{4}=7.920082617$

Input the value for x_{0} into the formula to find the value for x_{1}.
$8-\frac{5}{1^{2}}=3$
$x_{1}=3$
input the value for x_{1} into the formula to find the value for x_{2}.
$8-\frac{5}{3^{2}}=\frac{9}{9}$
$x_{2}=\frac{67}{9}$
formu
$8-\frac{5}{\left(\frac{67}{9}\right)^{2}}=7.909779461$
$x_{3}=7.909779461$
Input the value for x_{3} into the formula to find the value for x_{4}.
$8-\frac{5}{(7.909779461)^{2}}=$
7.920082617
$x_{4}=7.920082617$

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=\frac{67}{9} \\
& x_{3}=7.909779461 \\
& x_{4}=7.920082617
\end{aligned}
$$

A3: Solving Equations and Inequalities
Represent an inequality graphically
Find a region on a graph defined by more than one inequality

A3: Solving Equations and Inequalities
Use trial and improvement to solve an equation

A4: Graphs 1

Plot coordinates in four quadrants
Plot a linear graph from a sequence or formula

	(x coordinate, y coordinate)
Plot coordinates in four quadrants	For x , move right for positive values and left for negative.
e.g. Plot the origin $(0,0)$	For y, move up for positive values and down for negative.
Plot the point $(2,3)$	e.g.
Plot the point $(-1.5,-2.5)$	

Find the equation of vertical and horizontal lines
Find the equation of a line by considering the coordinates

A4.4 Find the equation of a line by considering the coordinates	Select a set of coordinates from the line and compare the x and y values. Use these to determine the equation of the line.
e.g. Find the equation of	
e.g. from this line you can get	
the coordinates	
$(-2,-2),(-1,-2),(0,-2),(1,-2)$,	
$(2,-2)$	
In all of these the y coordinate	
is -2 so the equation of the line	
is	
$y=-2$.	

Identify the intercept of a graph
Calculate the gradient of a linear graph

A4.5 Identify the intercept of a graph	The intercept of a graph is the value where the line crosses the y axis
e.g.	
e.g.	
this line crosses the y axis at	
2, so the intercept of the	
graph is 2.	

A4: Graphs 1

Calculate the gradient of a line segment between two points
Construct the equation of a line

A4.7 Calculate the gradient of a line segment between two points	The gradient is calculated using the formula Gradient $=\frac{\text { Change in y coordinates }}{\text { Change in } x \text { coordinates }}$
e.g. Find the gradient of the line segment between the points $(0,3)$ and $(2,9)$	Gradient $=\frac{9-3}{2-0}=\frac{6}{2}=3$. Find the gradient of the line segment between the points $(2,7)$ and $(5,1)$

A4.8 Construct the equation of a line e.g.	The equation of a straight line is given by $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. m is the gradient. c is the intercept.
e.g.	
Gradient $=\frac{5-2}{1-0}=\frac{3}{1}=3$.	
Intercept $=2$.	
$\mathrm{y}=\mathrm{mx}+\mathrm{c}$.	
$\mathrm{y}=3 \mathrm{x}+2$.	

Plot a quadratic Graph
Plot and Use Distance Time Graphs

A4.12 Plot and use distance time graphs	Plot distance on the vertical axis. Plot time on the horizontal axis. Speed is calculated using $\text { Speed }=\frac{\text { Distance } \text { Travelled }}{\text { Time taken }} .$
$\$	e.g. Between A and $B, 3 \mathrm{~km}$ are travelled in 5 hours.
	Between B and C, no distance is travelled during the 3 hour period.
From the graph explain what happens between:	Between E and F, 12 km are travelled in 6 hours.
A and B; B and C; E and F.	The greatest speed occurs where the line is the steepest. This between C and D.
Where is the speed the greatest?	You can also calculate speed: A to B 3 $\div 5=0.6 \mathrm{~km}$ per hour; C to D $9 \div 4=2.25 \mathrm{~km}$ per hour; E to $\mathrm{F} 12 \div 6=2 \mathrm{~km}$ per hour;

Find the coordinates of the midpoint of a line segment
Find the equation of a line passing through a given point, parallel to a given line
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { A4.13 } \\
\text { Find the } \\
\text { coordinates of the } \\
\text { midpoint of a line } \\
\text { segment }\end{array} & \begin{array}{l}\text { Draw the line segment and } \\
\text { identify the coordinates of the } \\
\text { point at the halfway position. } \\
\text { Find the midpoint of } \\
\text { this line segment } \\
y_{4}\end{array} \\
\begin{array}{l}\text { Alternatively, use the } \\
\text { coordinates of the ends of the } \\
\text { line segment. }\end{array}
$$

x coordinate of the midpoint

is the mean average of the x

coordinates of the end points,

i.e. (-3 + 8) \div 2=2.5 .

y coordinate of the midpoint\end{array}\right\}\)| is the mean average of the y |
| :--- |
| coordinates of the end points, |
| i.e. $(5+-1) \div 2=2$. |

A4.14 Find the equation of a line passing through a given point, parallel to a given line	If the lines are parallel, the gradient is the same for both. e.g.
Use $y=m x+c$. Find the equation of the line parallel to $y=3 x-1$ that passes through the point $(2,7)$	e.g. Gradient $=3$. When $x=2, y=7$. $y=m x+c$. $7=3 x 2+c$ $c=1$ $y=3 x+1$.

Plot and use speed time graphs
Find the gradient of a line perpendicular to another line

A4.15	Plot speed on the vertical axis.
Plot and use speed time graphs	Plot time on the horizontal axis. Acceleration is calculated using $\text { Acceleration }=\frac{\text { Change in speed }}{\text { Time }} \text {. }$
From the graph explain what happens between: 0 and 10 seconds; 10 and 20 seconds; 20 and 25 seconds.	e.g. Between 0 and 10 seconds, speed increased from 0 to 16 m / s in 10 seconds. Acceleration $=16 \div 10=1.6$ $\mathrm{m} / \mathrm{s}^{2}$. Between 10 and 20 seconds, speed remains constant. Acceleration $=0 \mathrm{~m} / \mathrm{s}^{2}$. Between 20 and 25 seconds, speed decreased from 16 to 0 m / s in 10 seconds. Acceleration $=-16 \div 5=-3.2$ $\mathrm{m} / \mathrm{s}^{2}$.

A4.16 Find the gradient of a line perpendicular to another line	When two lines are perpendicular, the product of their gradients is -1.
	Find the gradient of the given line. Find the reciprocal and change the sign. This is the gradient of the perpendicular line.
e.g. Find the gradient of a line perpendicular to the line $y=5 x+$ 4	e.g. Gradient of $y=5 x+4$ is 5. Negative reciprocal is $-1 / 5$ or - 0.2.
Find the gradient of G line perpendicular to the line $y=-2 x+$ 4	0.2. Gradient of $y=-2 x+4$ is -2. Negative reciprocal is $1 / 2$ or 0.5. Gradient of perpendicular is $1 / 2$.

Find the equation of a line passing through a given point, perpendicular to a given line
Find the equation of a perpendicular bisector to a line segment
Plot and use acceleration time graphs

A4,17	If the lines are perpendicular, the
Find the equation of a	product of their gradients is -1 .
line passing through a given point,	Use $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
perpendicular to a	e.g.
given line	Gradient of given line
e.g.	Gradient of perpendicular $=-2$.
Find the equation of	When $\mathrm{x}=2, \mathrm{y}=7$.
the line perpendicular	$y=m x+c$.
to $y=1 / 2 x+3$	$7=-2 \times 2+c$
that passes through	$c=11$
the point $(2,7)$	$y=-2 x+11$.
A4. 18 Find the equation of a perpendicular bisector to a line segment	Find the gradient and midpoint
	of the line segment.
	Find the gradient of a line
	perpendicular to the line
	segment.
	Use $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
e.g.	e.g.
Find the equation of the perpendicular	Gradient of line $=\frac{7-5}{0-4}=-1 / 2$
	Gradient of perpendicular $=2$.
the perpendicular bisector of the line	Midpoint of given line is $(2,6)$.
segment joining the	$y=m x+c .$
points $(0,7)$ and $(4,5)$.	$6=2 \times 2+c$
	$c=2$
	$y=2 x+2$.

A4: Graphs 1

Relate gradient of a line or curve to rate of change
Relate the area under a speed time graph to distance

A4.20 Relate gradient of a line or curve to rate of change.	The gradient of a line gives the rate of change of the variables. On a distance time graph, it shows the rate of change of distance with respect to time, i.e. speed. On a speed time graph, it shows the rate of change of speed with respect to time, i.e. acceleration.
A4.21 Relate the area under a speed time graph to distance.	The area under a speed time graph gives the distance travelled. In the example, the distance travelled in the first 10 seconds is the area of the triangle. Distance travelled $=(16 \times 10) \div$ 2 $=80 \mathrm{~m}$.

A5: Sequences

Continue a sequence using a term to term rule
 Generate a linear sequence using a term to term rule
 Generate e linear sequence using nth term
 Find the nth term of a linear sequence

A5.1
 Continue a sequence using a term to term rule

$\begin{array}{llll}1 & 5 & 9 & 13\end{array}$
This is the start of a
sequence.
Each individual digit is called a term.
Using a term to term rule carry on the sequence. What are the next two numbers of this sequence?

A5. 2

Generate a linear sequence using term to term rule
(I) A sequence has a starting term of 8 and a term to term rule of +3 . Generate the sequence
(ii) A sequence has a starting term of 8 and a term to term rule of -3 . Generate the sequence

Term to term rule $=+4$
The sequence can be carried On by adding 4
The next two numbers are 17 and 21
(i) $8 \quad 11 \quad 14 \quad 17 \quad 20$
…UU U $+3 \quad+3 \quad+3$

A5.3

Generate a linear sequence using nth term If the nth term of a sequence is $5 n+1$ what are the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of the sequence?
Replace n by each of the numbers 1, 2 and 3 in turn.

A5.4
 Find the nth term of a linear sequence

The position to term rule allows us to write a rule for any term in the sequence from its position.

Find the nth term for the sequence 4, 10, 16, 22

If the nth term is $\mathbf{5 n + 1}$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=$ 6
$2^{\text {nd }}$ term $(\mathrm{n}=2)=5 \times 2+1=$ 11
TBé sexquane8)begixs 3 + $+11=16$ Th6 terms have a difference of 5 which matches the 5 n in the formula.

Position	1	2	3	4
Term	4	10	16	22

$+6$
+6 means that the rule for this sequence contains $6 n$.
$1 \times 6-2=4$
$2 \times 6-2=10$
$3 \times 6-2=16$
Term $=$ position $\times 6-2$
Term $=\mathrm{n} \times 6-2$
nth term $=6 n-2$

A5: Sequences

Continue sequence of square numbersRelate sequences to patterns
Continue sequence of cube numbers Plot a linear graph from a sequence or formula
A5.5
Continue sequence of square
numbers
A square number is obtained
by multiplying a number by
itself e.g. $1 \times 1=1$
$2 \times 2=4$

A5.7

Relate sequences to patterns
This is a sequence of diagrams showing black tiles b and white tiles w.
How many white tiles are there when there are 8 black tiles?

A5. 8

Plot a linear graph from
a sequence or formula
Plot the graph of the formula
$y=2 x+1$

First make a table of values +
$y=2 x-1+1=-1$
$y=2 \times 0+1=1$ etc
$\mathrm{Y}=2 \mathrm{x}+1$

x	-1	0	1	2	3
y	-1	1	3	5	7

Find a formula for w in terms of b

b	1	2	3
W	5	6	7

Using the rule for sequences $w=b+4$

Therefore when $\mathrm{b}=8$
$\mathrm{w}=8+4$
$w=12$

Now plot x and y values as co-ordinate points and join with a straight line.
y

A5: Sequences

Recognise and continue sequence of triangular numbers
Recognise and continue Fibonacci type sequences

A5.9 Recognise and continue sequence of triangular numbers	$1,3,6,10,15, \ldots$. is the start of the sequence of triangular numbers.
The difference between the terms is	
$+2,+3,+4,+5$ and this can be used	
to continue the sequence.	

Identify arithmetic and geometric type sequences Identify a quadratic sequence

A5.11 Identify arithmetic and geometric type sequences In an Arithmetic sequence the sam amount (common difference) is added on to each term to continue the sequence. In a Geometric sequence every term is multiplied by the same amount (common ratio) to continue the sequence.	Are the following arithmetic or geometric sequences? (i) $2,6,18,54, \ldots$ (ii) $5,8,11,14,17 \ldots$. (iii) $256,128,64,32, \ldots \ldots$ (iv) $42,38,34,30,26, \ldots$. (i) Geometric: common ratio x3 (ii) Arithmetic: common difference +3 (iii) Geometric: common ratio $\times 0.5$ (iv) Arithmetic: common difference (v) -4
A5. 12 Identify a quadratic sequence	$\begin{array}{lllll}3 & 6 & 11 & 18 & 27\end{array}$
$\begin{array}{lllll}3 & 6 & 11 & 18 & 27\end{array}$	

This sequence does not have a common difference on the first line of Differences so we continue to the second row of differences.

A5: Sequences

Use the nth term to write a quadratic sequence

A5. 13 Use the nth term to write a quadratic sequence A quadratic sequence always contains a squared term. The nth term of a quadratic sequence is $2 n^{2}+n+1$. Write down the first 5 terms of this sequence.	$\begin{aligned} & 2 n^{2}+n+1 \\ & 2 \times 1^{2}+1+1=4 \\ & 2 \times 2^{2}+2+1=11 \\ & 2 \times 3^{2}+3+1=22 \\ & 2 \times 4^{2}+4+1=37 \\ & 2 \times 5^{2}+5+1=56 \end{aligned}$ So the sequence is 4, 11, 22, 37, 56 -...
A5. 14 Find the nth term of a quadratic sequence Find the nth term of the sequence $4,13,26,43,64$ If the $2^{\text {nd }}$ line of differences is 2 rule is n^{2} is 4 rule is $2 n^{2}$ is 6 rule is $3 n^{2}$ is 8 rule is $4 n^{2}$	The $2^{\text {nd }}$ line of differences is 4 so the rule contains $2 n^{2}$ This sequence has a rule $3 n-1$ so the whole rule is $2 n^{2}+3 n-1$

A6: Graphs 2

Plot a graph of a cubic function Identify and plot a reciprocal graph

A6.1 Plot a graph of a cubic function e.g. Plot the graph of $y=x^{3}+2 x^{2}-5 x-6$	Draw a table of values by substituting values of x into the formula. Plot the points in pencil. Join the points with a ruler and pencil. They should be in a smooth curve $\text { e.g. } y=x^{3}+2 x^{2}-5 x-6$						
	x	-3	-2	-1	0	1	2
	y	0	4	0	-6	-8	0
				$\mid c_{-6}^{-2}$	+	4	-

A6: Graphs 2
Identify and plot a exponential graph
Know the graph of sine
Know the graph of cosine

A6. 4 Know the graph of sine	For the Sine function between 0 and 360°, the main values are					
	x	0	90	180	270	360
	y	0	1	0	-1	0
	giving this curve					
Know the graph of cosine	For the Cosine function between 0 and 360°, the main valune aro					
	x	0	90	180	270	360
	y	1	0	-1	0	1

A6: Graphs 2

Know the graph of tangent
Translate a graph $f(x+a)$ and $f(x)$ +a

A6.5 Know the graph of tangent	For the Tangent function between -180° and 180°, the main values are							
	\times	-18	-13	-45	0	45	135	180
	y	0	1	-1	0	1	-1	0
	There are asymptotes at -90° and 90°. The graph of tangent is Graph of the Tangent Function							

A6: Graphs 2

Reflect a graph $f(-x)$ and $-f(x)$
Know and plot the graph of a circle

A6: Graphs 2

Estimate the gradient of a curve using a tangent
Estimate the area under a curve using trapezia

| A6.9 |
| :--- | :--- |
| Estimate the |
| gradient of a curve |
| using a tangent |\quad| To estimate the gradient of a |
| :--- |
| curve at a given point, draw a |
| tangent to the curve at that |
| point. |
| Find the gradient of the tangent. |
| e.g. estimate the gradient of the |
| curve $\mathrm{y}=\mathrm{x}^{2}$ at the point (3,9). |
| $\mathrm{y}=\mathrm{x}^{2}$ at the point $(3,9)$. |

| A6.10 |
| :--- | :--- |
| Estimate the area |
| under a curve using |
| trapezia | | Divide the area under the curve into |
| :--- |
| trapezia of equal width. |
| e.g. |
| estimate the are |
| under the curve trapezia. is gained by using |
| $\mathrm{y}=\mathrm{x}^{2}+1$ between |
| $\mathrm{x}=0$ and $\mathrm{x}=3$. |

A6: Graphs 2

Relate gradient of a line or curve to rate of change
Relate the area under a speed time graph to
distance

A6.11 Relate gradient of a line or curve to rate of change.	The gradient of a line gives the rate of change of the variables. On a distance time graph, it shows the rate of change of distance with respect to time, i.e. speed. On a speed time graph, it shows the rate of change of speed with respect to time, i.e. acceleration.
A6. 12 Relate the area under a speed time graph to distance.	The area under a speed time graph gives the distance travelled. In the example, the distance travelled in the first 10 seconds is the area of the triangle. Distance travelled $=(16 \times 10) \div$ 2 $=80 \mathrm{~m}$.

G1: Angles, Similarity and Congruency
Identifying types of angle
Drawing an angle

G1.2	
Drawing an angle e.g. Draw an angle of 60°	Draw a straight line elace your protractor on either end of the line and using the appropriate scale find 60 degrees and put a

A6: Graphs 2

Measuring angles
Know and use angles on a straight line

G1. 2 Measuring	Place the midpoint of the protractor on the VERTEX of the angle.
angles e.g. measure the following	Line up one side of the angle with the zero line of the protractor (where you see the number 0).
	Read the degrees where the other side crosses the number scale.
	$=126^{\circ}$

A6: Graphs 2

Know and use angle sums of a point Know and use the corresponding angle rule

| Know and use |
| :--- | :--- | :--- |
| angle sums at |
| a point | | Find the total of the given |
| :--- |
| angles and subtract your |
| answt |

A6: Graphs 2

Know and use the alternate angle rule
Know and use the vertically opposite angle rule

A6: Graphs 2

Know and use the interior angles in a triangle Know and use the sum of interior angles in a quadrilateral

G1.8	Angles in a triangle add up to 180°		
Know and use			
the sum of			
interior angles in			
a triangle		\quad	Find the total of the given
:---			
angles and subtract your answer			
from 180°.			
the missing			
angle in each of			
the folllowing			
questions.			

G1.9	Angles in a quadrilateral add up to 360°
Know and use the sum of interior angles in a quadrilateral	Find the total of the given angles and subtract your answer from 360°.
e.g. Calculate the missing angle in each of the folllowing questions.	$\begin{aligned} & 109+83+115=307 \\ & 360-307=53^{\circ} \end{aligned}$
	$\begin{aligned} & 73+90+90=253 \\ & 360-253=107^{\circ} \end{aligned}$

A6: Graphs 2

Know and use the sum of internal angles of a polygon
Identify congruent shape using the simple definition of congruency

G1. 10	A polygon is a 2 d shape formed by straight lines. The
Know and use the sum of internal angles	formula for finding the sum of the measure of the interior angles is $(n-2) \times 180$.
of a polygon	n represents the number of sides the shape has.
e.g.	
Calculate the sum of internal angles of the following shape.	
	Calculate the sum of interior angles in a Hexagon
-	A hexagon has 6 sides.
Calculate the sum of interior angles in a	$(6-2) \times 180=720^{\circ}$
Hexagon	

G1.11	
Identify congruent shapes using the simple definition of congruency.	Congruent shapes have the same size and shape. This means that the sides and segments of two shapes have the same length. And, the angles possess the same measurements If one shape can be made from another using Rotations, Reflections, or Translations then the shapes are Congruent.
List all the congruent pairs of shapes.	
e.g. List the congruent pairs of shapes.	

A6: Graphs 2

Use similarity to find missing lengths
Know and use the sum of external angles of a regular polygon

G1. 12 Use similarity to find missing lengths.	When two shapes are similar, the ratios of the lengths of their corresponding sides are equal. Similar shapes are enlargements of each other.
e.g. Rectangle $A B C D$ and EFGH are mathematically similar. $B \longdiv { 7 c m }$ $7 \mathrm{~cm} C$	e.g.
	Rectangle ABCD and EFGH are mathematically simil ar. Calculate the length of FG .
9 cm \qquad Calculate the length of FG	The scale factor to get from 3 cm to 9 cm is 3 . Which means you must multiply the other sides by 3 also.
	Therefore $7 \times 3=21 \mathrm{~cm}$ $\mathrm{FG}=21 \mathrm{~cm}$

G1. 13	The sum of exterior angles of any polygon is 360°. Knew and use the sizmula for calculating an exterior angle of a regular polygon is: the sum of external angles of a regular polygon
exterior angle of a	
regular polygon $=360 \div$	
number of sides.	

A6: Graphs 2

Read a bearing
Draw a bearing

G1. 14	A bearing is used to represent the direction of one point relative
Read a bearing	to another point
e.g. Measure the bearing from	There are 3 rules to follow when measuring a bearing:
A to B	- Measure from north
	- Measure clockwise - Writing using 3 digits
	e.g. Measure the hearing from A to B.
	$=054{ }^{\circ}$
$b \epsilon_{N}$	Measure the following bearing
	$=110^{\circ}$
L	

A6: Graphs 2

Prove Congruency using ASA SAS SSS and RHS
Use similarity to find missing areas

| G1. 16 |
| :--- | :--- | :--- |
| Prove |
| congruency |
| using | | Congruent shapes have the |
| :--- |
| same size and shape. |
| One will fit exactly over the |
| other. |
| 2 triangles are congruent if any |
| of these 4 conditions are |
| satisfied on each triangle. |

G1. 17	Similar figures are identical in shape, but not necessarily in size. A missing length, area or volume on a reduction/enlargement figure can
Use similarity to find missing areas	be calculated by first finding the scale factor. We already know that if two shapes are similar their corresponding sides are in the same ratio and their corresponding angles are equal.
e.g. find the missing area	When calculating a missing area, we need to calculate the Area Scale Factor. Area Scale Factor (ASF) = (Linear Scale Factor) ${ }^{2}$ Area Scale Factor $(\mathrm{ASF})=5^{2}$ Area scale factor $=25$
The area of the smaller logo is $20 \mathrm{~cm}^{2}$ Find the area of the larger logo.	So the area of the new shape is; area of old shape x area scale factor $\begin{aligned} & =20 \times 25 \\ & =500 \mathrm{~cm}^{2} \end{aligned}$

A6: Graphs 2

Use similarity to find missing volumes

| G2.1 |
| :--- | :--- | :--- | :--- |
| Identify line |
| symmetry |\quad| Order of Line Symmetry |
| :--- |
| this is the number of times a shape can be folded so |
| that one side falls exactly onto the other side |\quad| G2.2 |
| :--- |
| Identify |
| rotational |
| symmetry |

G2: 2D Shapes

Reflect a Shape
Describe a reflection

G2: 2D Shapes

Rotate a shape

Describe a rotation

G2.5	A rotation is a turn of a shape.
Rotate a shape	A rotation is described as the angle of rotation, and the direction of the turn. e.g. 90° is a quarter turn e 180° is a half turn Clockwise is the same direction a clock turns The opposite to clockwise
Rotate the following shape 90° clockwise	e.g. Rotate the following shape 90° clockwise

G2: 2D Shapes

Translate a shape

Describe a translation

G2.7
Translate a shape
e.g. Translate the following shape 2 left and 1 up

A translation moves a shape up, down or from side to side but it does not change its appearance in any other way.

Translation is an example of a transformation. A transformation is a way of changing the size or position of a shape.

Every point in the shape is translated the same distance in the same direction.

You are given to instructions to move the shape;

- Left or right
- Up or down

Translate the following shape 2 left and 1 up

G2. 8
Describe a
Translation
e.g.

Describe the following translation to map shape d to shape e.

e.g. describe the following translation to map shape d to shape e.
6 right and 3 up

G2: 2D Shapes

Enlarge a shape by an integer scale factor

Describe an enlargement by an integer scale factor
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { G2.9 }\end{array} \\ \text { Enlarge a shape } \\ \text { by an integer scale } \\ \text { factor }\end{array} \begin{array}{l}\text { e.g. Enlarge the } \\ \text { following shape by } \\ \text { a scale factor of 2 }\end{array}\right]$

Enlarging a shape changes its size.
When enlarging a shape you need to know by how much. This is called the scale factor. For example, a scale factor of 2 means that you multiply each side of the shape by 2 .

An enlargement with positive scale factor greater than 1 increases the size of the enlarged shape.
e.g. Enlarge scale factor o

Multiply each of the sides of the shape by 2 and re-draw.

G2: 2D Shapes

Calculate the perimeter of a

rectangle

Calculate the area of a rectangle

G2.11	The perimeter is the length of the outline of a shape. To find the perimeter of a rectangle or square you have to add the lengths of all the four sides perimeter of a rectangle
e.g. Calculate the perimeter of the following rectangle 5 Calculate the perimeter of the following rectangle	Perimeter $=5+5+3+3=16$ in

G2: 2D Shapes

Calculate the area of a triangle Calculate the area of a parallelogram

G2.13	
Calculate the area of a triangle	A shapes area is the number of square units it takes to completely fill it. In a triangle you find it by multiplying the base by the height (perpendicular), then dividing your answer by 2.
Area of a triangle $=\frac{\text { base } x \text { height }}{2}$ the following triangle	
e.g. Calculate the area of the following triangle	
Area of triangle $=\frac{9 \times 7}{2}$	

> G2.14

Calculate the area of a parallelogram

e.g

Calculate the area of the following parallelogram

A shapes area is the number of square units it takes to completely fill it. In a parallelogram you find it by multiplying the width by the height.

Area of a parallelogram $=$ width x height
e.g. Calculate the area of the following parallelogram

Area of parallelogram $=12 \times 6$
Are of parallelogram $=72 \mathrm{~cm}^{2}$

G2: 2D Shapes

Calculate missing sides from areas
Read a timetable

G2.15
Calculate missing sides from areas

e.g.

Calculate the missing side of the following shape.

To find missing lengths of rectangles you first need to remember the formula to find the area which is:

Area $=$ width \times length
What you need to do is rearrange the formula, so what you are looking for is the subject.

In this case you are looking for the length so you rearrange the formula to make it the subject.

$$
\begin{aligned}
\text { Length } & =\text { area } \div \text { width } \\
\text { Length } & =8 \div 4 \\
& =2 \mathrm{~cm}
\end{aligned}
$$

Shortcut:
With a rectangle or square you just divide the area by the side that you are given.

G2. 16
Read a timetable
e.g. Read \& interpret timetables

Station	Time of leaving
Peterborough	0844
Huntingdon	0901
St Neots	0908
Sandy	0915
Biggleswade	0919
Arlesey	0924

e.g. Time taken to travel from Peterbrough to Sandy

$0844 \quad 0900$	0915
$16 \mathrm{~min}+\quad 15 \mathrm{~min}$	$=31 \mathrm{~min}$

To read a timetable such as the one in the example, you look at the "time of leaving" column. This states the time that the particular mode of transport leaves that particular place.

G2: 2D Shapes
Use Metric measures of length Convert metric units of length

G2.17	We can measure how long things are, or how tall, or how far apart they are. Those are all examples of length measurements.
Use metric measures of length	Small units of length are called millimetres. A millimetre is about the thickness of a plastic id card (or credit card).
	When we have 10 millimetres, it can be called a centimetre. 1 centimetre = 10 millimetres A fingernail is about one centimetre wide.
	We can use millimetres or centimetres to measure how tall we are, or how wide a table is, but to measure the length of a football pitch it is better to use metres.
	A metre is equal to 100 centimetres. 1 metre $=100$ centimetres
	The length of a guitar is about 1 metre Metres can be used to measure the length of a house, or the size of a playground.
	A kilometre is equal to 1000 metres. The distance from one city to another or how far a plane travels can be measured using kilometres.

G2. 18 Convert metric units of length	10mm	1 cm
	100 cm	1 m
e.g. Convert:	1000	1 km
100 mm to cm 170 cm to m 6700 m to km	e.g. convert: 100 mm to cm Divide by 10 170 cm to m Divide by 100 6700 m to km Divide by 1000 To work the othe you do the inver 10.	$=10 \mathrm{~cm}$ $=1.7 \mathrm{~m}$ $=6.7 \mathrm{~km}$ way i.e. cm to mm i.e. multiply by

G2: 2D Shapes
Use Metric measures of mass
Convert metric units of mass

$\text { G2. } 19$ Using metric units	Mass: how much matter is in an object. We measure mass by weighing, but weight and mass are not really the same thing.
Using metric units for mass	These are the most common measurements: - Grams - Kilograms - Tonnes Grams are the smallest, Tonnes are the biggest.
	Grams are often written as g (for short), so "300 g" means "300 grams". A loaf of bread weighs about 700 g
	When we have 1000 g , we have 1 kilogram, written short as 1 kg . Scales measure our mass using kilograms. An adults mass can be about 70 kg .
	But when it comes to things that are very heavy, we need to use the tonne. Once we have 1,000 kilograms, we will have 1 tonne. Some cars can have a mass of around 2 tonnes

G2: 2D Shapes

Use Metric measures of volume or capacity Convert metric units of volume or capacity (litres only)

G2: 2D Shapes
Use simple conversions of imperial to metric
Enlarge a shape by an integer factor with a centre of enlargement

G2. 23 Use simple conversions of imperial to metric	- Imperial units		
	Length	Weight	Capacity
	1 inch 2.5 cm	2.2 pounds $\sim 1 \mathrm{~kg}$	19alloñ4.5litres
	1 foot $=30 \mathrm{~cm}$		
	1 mile 1.6km		
	Convert:		
	3 inches to cm		
	5 feet to cm		
	Multiply by $30 \quad=150 \mathrm{~cm}$		
	4 miles to km		
	Multiply by $1.6 \quad \approx 6.4 \mathrm{~km}$		
	180 pounds to kg		
	Divide by $2.2 \quad \approx 82 \mathrm{~kg}$		
	7 gallons to litres		
	Multiply by $4.5 \quad \approx 31.5 \mathrm{~L}$		
	To work the other way i.e. cm to feet you do the inverse i.e. divide by 30		

G2. 24
Enlarge a shape by an integer scale factor with a centre of enlargement
e.g.

Enlarge the following shape by the given scale factor and from the given centre of enlargement

$$
\text { Scale factor } 2
$$

You sometimes can be asked to enlarge from a specific centre of enlargement. When a shape is enlarged from a centre of enlargement, the distances from the centre to each point are multiplied by the scale factor.
e.g. Enlarge the following shape by the given scale factor and from the given centre of enlargement

To enlarge using a centre of enlargement, you count the distance from of each point from the centre of enlargement, then multiply that distance by the scale factor.

G2: 2D Shapes
Describe an enlargement by an integer scale factor and a centre of enlargement Enlarge a shape using a fractional scale factor

First of all use the flow chart to decide which of the transformations it is.

When you have found that it is an enlargement, you need to find the scale factor. To do this you must count the length of the sides and see what you multiply by to get from A to B.

To work out the centre of enlargement you join the vertices of both shapes and see where the lines intersect, this is the centre of enlargement.

This is an enlargement, with scale factor of 3 . centre of enlargement is $(1,3)$

G2. 26
Enlarge a shape using a fractional scale factor
e.g.

Enlarge the following shape with a scale factor of $a \frac{1}{2}$

To enlarge a shape with a fractional scale factor, you follow the same steps as when you enlarge with an integer.
e.g. enlarge the following shape with a scale factor of $a \frac{1}{2}$.

G2: 2D Shapes
Translate a shape

Describe a translation

G2.27
Translate a shape
e.g. Translate the following shape in the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$

\square		,	\square	\square
				\checkmark

A translation moves a shape up, down or from side to side but it does not change its appearance in any other way.

Translation is an example of a transformation. A transformation is a way of changing the size or position of a shape.

Every point in the shape is translated the same distance in the same direction.

Column vectors are used to describe translations.
$\left[\begin{array}{c}4 \\ -2\end{array}\right]$ Means that you move the shape 4 to the right and 2 down
$\left[\begin{array}{c}-2 \\ 5\end{array}\right]$ Means that you move the shape 2 to the left and 5 up
e.g.

Translate
the
following shape in
the
vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$

G2: 2D Shapes

Rotate a shape with a given centre of rotation Describe a rotation through a centre of rotation

G2.30
Describe a
rotation
through a
centre of
rotation

First of all decide which of the transformations it is by using the flow chart.

Find two corresponding points on the original shape and the shape that's been rotated typically, the pointy end of the triangle, or a convenient right angle. Draw a line between them.
At each of the points, draw a line at 450 towards where you thing the centre of rotation ought to be.
Where these lines cross is the centre of rotation.
Check you've gone the right way: measure the distance from your centre to two other corresponding points and check they're the same.
Otherwise, you need to draw your 45° lines on the other side of your line
Continued on the next page.

G2: 2D Shapes
Describe a rotation through a centre of rotation (continued) Reflect a shape using a diagonal or horizontal line

This is a rotation, 90° anticlockwise, from $(1,0)$

G2.31
Reflect a shape using a diagonal line or horizontal line
e.g.

Reflect the following shape in the line $y=$ x

Firstly, you must find the mirror line. In the line $y=x$ the y coordinate is the same as the x coordinate.

This means if you y coordinate is 1 your x coordinate is 1 . This creates a diagonal line from the origin.

You then count the distance from each vertex to the mirror line and replicate it on the other side of the mirror line.

G2: 2D Shapes
Describe a reflection using the equation of a line Calculate the area of a trapezium

Firstly you need to decide which of the transformations it is.

When you have found that it is a reflection , you need to find the mirror line.

To do this you need to find a line in which all the points of each shape will be equidistant to the corresponding point.

So this is a reflection in the line $x=1$

G2.33
Calculate the area of a trapezium
e.g.

Calculate the area of the following shape

To find the area of a trapezium you need to use a specific formula.

$$
A=\frac{(a+b)}{2} \times h
$$

e.g. Calculate the area of the following shape

Area $=52.5 \mathrm{~m}^{2}$

G2: 2D Shapes

Calculate the area of a circle Calculate the circumference of a circle
$\left.\begin{array}{|l|l|}\hline \text { G2.34 } \\ \begin{array}{l}\text { Calculate the area of } \\ \text { a circle }\end{array} & \begin{array}{l}\text { To find the area of a circle you need to } \\ \text { follow a specific formula. }\end{array} \\ \text { e.g. } \\ \text { Work out the area of } \\ \text { the following circle }\end{array} \quad \begin{array}{l}\text { e.g. work out the area of the following } \\ \text { circle } \\ \text { Area }=\pi r^{2} \\ \text { Area }=\pi \times 5^{2} \\ \text { Area }=78.5398163 \ldots \\ \text { Area }=78.5 \mathrm{~cm}^{2} 1 \mathrm{dp}\end{array}\right\}$

G2.35	
Calculate the circumference of a circle	To find the circumference of a circle you need to follow a specific formula.
W.g. Work out the circumference of the following circle	or $\quad \mathrm{c}=\pi \mathrm{d}$
e.g. Work out the circumference of the following circle	
Circumference $=\pi \mathrm{d}$ Circumference $=\pi \times 5$ Circumference $=15.707 \ldots$ Circumference $=15.7 \mathrm{~cm} 1$.	

G2: 2D Shapes
Calculate the area of a sector Calculate arc length

G2.36

Calculate the area of a sector
e.g.

Find the area of the following sector

We can find the area of a sector using the formula:

$$
\frac{\theta}{360} \times \pi r^{2}
$$

θ is the angle of the secto r is the radius
e.g. Find the area of the following sector

Area $=\frac{o u}{360} \times \pi \times 7^{2}$
Area $=34.208 \ldots$
Area $=34.2 \mathrm{~cm}^{2} 1 \mathrm{dp}$

G2.37
Calculate arc length
e.g.

Evaluate the length of the following arc

To
calculate arc length you use

$$
\text { Arc length }=\frac{\text { angle }}{36 O^{\circ}} \times \pi \times d
$$

e.g. Find the length of the following arc

Arc length $=\frac{60}{360} \mathrm{x}$
$\pi \times 24$
Arc length =
12.566..

Arc length $=12.6$
cm

G2: 2D Shapes
Enlarge a shape using a negative scale factor Convert metric units of area and volume

G2.38

Enlarge a shape using a negative scale factor
e.g. Enlarge the following shape with a scale factor of -3 from point 3

An enlargement using a negative scale factor will cause the enlargement to appear on the other side of the centre of enlargement; and will be inverted (upside down). The shape will also change size depending on the value of the enlargement.

To enlarge by a negative scale factor, you need to work out the vector from P to each corner of the shape.

You then multiply each vector by the scale factor.

You will end up with new vectors that you draw from p.

In this example you multiply each vector by -3 .

G2.39	The method for converting between units works the same as the one for converting units of area
Convert metric units of area or volume	and volume.
	When you are converting one sort of unit to another, you need to know how many smaller units are needed to make 1 larger unit. Area
e.g. Convert $5 \mathrm{~m}^{2}$ to cm^{2}	Convert $5 \mathrm{~m}^{2}$ to cm^{2} 1 m 100 cm
	Area $=$ $5 \mathrm{~m} \times 1=$ $5 \mathrm{~m}^{2}$$\quad=\quad 50$Area $=$ $500 \times 100=$ 50000 cm 2
e.g. Convert 5,000 mm^{3} to cm^{3}	Volume Convert $5,000 \mathrm{~mm}^{3}$ to cm^{3}

G2: 2D Shapes
Recognise the circle theorems
e.g. What are the eight
Recognise the
circle theorems
The perpendicular from
point
the centre to the chord
equal tangle between
chord is equal to angle in the
alternate segment

G2: 2D Shapes

Use circle theorems to solve problems

G2. 41

Use circle theorems to solve problems

e.g. Work out angle ADC

e.g. Work out the angle ACD, give reasons for your answer

Work out angle ADC
Angle $\mathrm{ABC}=84^{\circ} \quad$ Angle at the centre is $2 x$ the angle at the circumference.
Angle ADC $=96^{\circ} \quad$ Opposite angles in a cyclic quadrilateral add up to 180°

Work out the angle ACD, give reasons for your answer

ACD $=54^{\circ}$ because angles in the same segment are equal.

G3: 3D Shapes
Identify properties of a 3D shape
Identify a net of a cube
Represent a 3D shape on an isometric grid
Identify a net of other 3D cuboids

G3.1 Identify properties of a 3D shape	3D shapes have faces (sides), edges and vertices (corners). Faces A face is a flat or curved surface on a 3D shape. E.g. a cube has 6 faces, a cylinder has 3 and a sphere 1. Edges An edge is where two faces meet. E.g. a cube has 12 edges, a cylinder has 2 and a sphere has none. Vertices A vertex is a corner where edges meet. The plural is vertices. E.g. a cube has 8 vertices, a cone has 1 vertex and a sphere has none. A cube has 6 identical faces, 12 edges and 4 vertices.
G3.2 Represent a 3D shape on an isometric grid	Isometric paper is used to accurately draw 3D shapes.
E.g. Create an isometric drawing of a cube measuring $6 \mathrm{~cm} \times 6 \mathrm{~cm} \times \mathrm{cm}$.	Never join the dots horizontally

G3: 3D Shapes

Identify a 3D shape from plans and elevations Calculate the surface area of a cuboid Calculate the volume of a cuboid

Recognise the net of a cylinder

G3: 3D Shapes

Recognise the net of a tetrahedron Recognise the net of prisms

Calculate the volume of a prism

Calculate the volume of a prism
G3.9
Recognise the net of a
tetrahedron
E.g. What 3D shape does this

net create? \quad| A Tetrahedron. also known as a triangular pyramid, is |
| :--- |
| a polyhedron composed of four triangular faces, six |
| straight edges, and four vertex corners. |

G3.11
Calculate the volume of
a prism
E.g. What is the formula
for working out the
volume of any prism?

To find the volume of any prism, calculate the area of the
cross-section and multiply by the length.
Volume = Area of cross-section x length

With any prism there is a shape which is repeated
throughout the length - this is the cross section.
Calculate the volume of
a prism

G3: 3D Shapes

Calculate missing sides from volume Calculate the surface area of a cylinder

Use the formula for volume of a sphere Use the formula for the volume of a cone

G3.13 Calculate missing sides from volumes E.g. The volume of this cube is $420 \mathrm{~cm}^{3}$. What is the length the missing side?	Volume of a cuboid $=$ Length \times Height \times Width $\begin{aligned} & 420=10 \times 6 \times y \\ & 420=60 \mathrm{y} \\ & Y=7 \mathrm{~cm} \end{aligned}$
G3.14 Calculate the surface area of a cylinder E.g. Calculate the surface area of this cylinder.	

G3.15 Use the formula for volume of a sphere E.g. Calculate the volume of this sphere to one decimal place.	Volume of sphere $=\frac{4}{3} \pi r^{3}$ $\begin{gathered} =\frac{4}{3} \times \pi \times 4^{3} \\ =\frac{4}{3} \times \pi \times 4^{3} \\ \frac{256 \pi}{3}=85.3 \mathrm{~cm}^{3} \end{gathered}$
G3.16 Use the formula for the volume of a cone E.g. Calculate the volume of this cone to one decimal place.	$\begin{aligned} & \text { Volume }=\frac{1}{3} \pi r^{2} h \\ & v=\frac{1}{3} \times \Pi \times 2^{2} \times 3 \\ & v=4 \Pi \\ & v=12.6 \mathrm{~cm}^{3} \end{aligned}$

G3: 3D Shapes

Use the formula for curved surface area of a cone Use the formula to find the surface area of a sphere

Recognise the net of a cone

G3.17 Use the formula for curved surface area of a cone E.g. Work out the area of the curved surface of this cone. Leave in terms of pi.	The area of the curved (lateral) surface of a cone $=\pi r l$ Where, r is the radius h is the height I is the slant height $\begin{aligned} \mathrm{SA}= & \pi r l \\ = & \pi \times 3 \times 5 \\ & =15 \pi \end{aligned}$
G3.18 Use the formula to find the surface area of a sphere E.g. Calculate the surface area of this sphere. Leave your answer in terms of pi.	Curved surface area of a sphere $=4 \pi r^{2}$ $\begin{aligned} & S A=4 \pi r^{2} \\ & =4 \times \pi \times 3^{2} \\ & =4 \times \pi \times 9 \\ & =36 \pi \end{aligned}$

G3.19
Recognise the net of a cone
E.g. What 3D shape does this
net create?

G3: 3D Shapes

Calculate the volume of a frustum

Calculate the curved surface area of a frustum

G3.20

Calculate the volume of a frustum
E.g. Below is the frustum of a cone.

The height of the small cone is 20 cm .

The height of the large cone is 40 cm .

The diameter of the base of the large cone is 30 cm .

Work out the volume of the frustum. Leave your answer correct to 3.s.f.

A frustum is a cone that has had a smaller cone removed from the top

Large cone $=\frac{\pi 15^{2} \times 40}{3}$
$=3000 \pi$

To find the radius of the small cone we have to remember it is in proportion. The height goes from 40 cm to 20 cm ..It has halved.
So we can half the radius too.
Small cone $=\frac{\pi 7.5^{2} \times 20}{3}$
$=375 \pi$

Large cone - small cone $=2625 \pi$ $=8250 \mathrm{~cm}^{3}$

G3. 21
Calculate the curved surface area of a frustum
E.g. Work out the curved surface area of the frustum of the cone below. Leave your answer in terms of pi.

A frustum is a cone that has had a smaller cone removed from the top.

So we want to find the curved surface area of the large cone and take away the curved surface area of the small cone.

Curved surface area of a cone $=\pi r$
Where I is the slanted height of the cone.
Large cone $=\pi \times 10 \times 30$ $=300 \pi$

Small cone $=\pi \times 6 \times 18 \quad 18 \mathrm{~cm}$ $=108 \pi$

Total surface area of the frustum
= large cone - small cone
$300 \pi-108 \pi=192 \pi$

G4: Constructions and Loci

Construct a triangle given two angles and a side
Construct a triangle given two sides and an angle
Construct a triangle given all three sides
Construct a right angled triangle given the hypotenuse

G4.1 Construct a triangle given two angles and a side (ASA)	Measure out the base using a ruler Use a protractor to construct the angles Leave construction lines
G4.2 Construct a triangle given two sides and an angle (SAS)	Use a protractor and draw in the angle Measure second side using a ruler and draw it in. Complete the triangle
G4.3 Construct a triangle given all three sides (SSS)	

G4.4 Construct a right angled triangle given the hypotenuse	Example: Draw line segment of 3 cm to form the base Construct a perpendicular bisector from A Using a compass construct an arc from B, crossing the perpendicular bisector at C Draw in the sides of your triangle, leaving the construction marks.

G4: Constructions and Loci

Construct a perpendicular bisector
Construct a perpendicular bisector from a point to a line

G4.5 Construct a perpendicular bisector	Using a compass construct arcs from points A \& B. Make sure the distance between your pencil and the compass point is the same for both. Complete your bisection by drawing a line through the intersecting points of the two arcs, going through C on the diagram

G4.6 Construct a perpendicular bisector from a point to a line segment	Using a compass construct a semicircle below the line segment, placing your compass point at P. Construct a perpendicular as you did before, using the points where the semicircle crosses the line segment as point A \& B as in the example given in G4.5
$\stackrel{y y y}{c}$	

G4: Constructions and Loci

Construct a perpendicular bisector through a point on a line segment
Construct an angle bisector

| G4.7 Construct a
 perpendicular
 bisector through a
 point on a line
 segment | Using a compass construct a
 semicircle below the line
 segment, placing your compass
 point at P.
 Construct a perpendicular as
 you did before, using the points
 where the semicircle crosses the
 line segment as point A \& B as in
 the example given in G4.5 |
| :--- | :--- | :--- |

G4.8 Construct an angle bisector	Using a compass construct an arc from B, passing through both AB and BC . Draw an arc, placing the compass point at the intersection on AB . Repeat for the intersection on BC . The arcs with intersect at D. Draw a line segment through D to B as shown in the diagram.

G4: Constructions and Loci

Draw a locus of points a given distance from a point (circle)
Draw a locus of points equidistant from two points
Draw a locus of points equidistant from two lines

| G4.9 Draw a
 locus of points a
 given distance
 from a point
 (circle) | A locus is the path or region a
 point covers as it moves
 according to a rule. |
| :--- | :--- | :--- |
| A series of points a fixed distance
 (equidistant) from a point is a
 circle | |
| G4.10 Draw a
 locus of points
 equidistant from
 two points | The locus of points equidistant
 from two points is a
 perpendicular bisector (see
 G4.5, G4.6, G4.7) |

G4.11 Draw a locus of points equidistant from two lines	The locus of points equidistant from two intersecting lines is an angle bisector (see G4.8)

G4: Constructions and Loci

Apply loci techniques to more complex problems

G4.12 Apply loci techniques to more complex loci problems	Some examples of more complex loci problems. Remember that loci is the plural of locus. The runner is following a path. The path is a locus.
	The hands of a clock move around the clock and create a locus.
A cow is tied to a post by a 4 m length of rope. The area of grass she can reach is a locus.	

G4.12 Apply loci techniques to more complex loci problems	Some examples of more complex loci problems. Remember that loci is the plural of locus. Visitors must stand 2m away from the walls of a monkey enclosure. The diagram shows nhoro visitnre move ctond
The path is equidistant between	
the edges of the field, MJ and	
ML.	
The locus is an angle bisector	
(G4.8).	

G5: Pythagoras and Trigonometry

Use Pythagoras' theorem to find a missing side
Use Pythagoras' theorem to calculate a missing side

G5: Pythagoras and Trigonometry

Use trigonometry for right angle triangles to find a missing side
Use trigonometry for right angle triangles to find missing angles
Use vector column notation

G5.4 Use Trigonometry for right angled triangles to find missing angles	Remember SOHCAHTOA Label the sides of the triangle you have with Opposite, Adjacent or Hypotenuse. Choose the correct trigonometric ratio to use. Substitute into the relevant formula and solve the equation using inverse functions e.g Label the triangle up
e.g Find x in the triangle below	We have opp and adj so use Tan tan $(x)=\frac{13}{5}$

G5: Pythagoras and Trigonometry

Add and subtract two column vectors
Use unknown vector notation
Know how to show two vectors are parallel

G5: Pythagoras and Trigonometry

Use Pythagoras and trigonometry in 3D
Use the sine rule to find a missing side

G5.12 Use the sine rule to find a missing side	In order to find a missing side using Sine rule label the side you are trying to find as a and the angle that is opposite that as A. Then label the other side you know as b and the angle opposite that as B. Following that substitute into the below formula and solve for a $\frac{a}{\sin (A)}=\frac{B}{\sin (B)}$
e.g Find the missing side in the triangle below	e.g First relabel the triangle using the instructions f / m above Then substitute into the formula and solve $\frac{x}{\sin (47)}=\frac{5}{\sin (64)}$ Multiply both sides by $\sin 47$ $\begin{gathered} x=\frac{5 \times \sin (47)}{\sin (64)} \\ x=4.07 \mathrm{~cm} \end{gathered}$

G5: Pythagoras and Trigonometry

Use the sine rule to find a missing angle
Use cosine rule to find a missing side

G5.13 Use the sine rule to find a missing angle	In order to find a missing angle using Sine rule label the angle you are trying to find as A and the side that is opposite that as a. Then label the other angle you know as B and the side opposite that as b. Following that substitute into the below formula and solve for A $\frac{\sin (A)}{a}=\frac{\sin (B)}{\mathrm{b}}$
e.g Find the missing angle in the triangle	e.g First relabel the triangle using the instructions from above Then substitute into the formula and solve $\frac{\sin (x)}{7}=\frac{\sin (64)}{8}$ Multiply both sides by 7 $\sin (x)=\frac{7 \times \sin (64)}{8}$ Take $\sin ^{-1}$ $x=51.9^{\circ}$

G5.14 Use the cosine rule to find a missing side	In order to find a missing side using Cosine rule label the side you are trying to find as a and the angle that is opposite that as A. Then label the other two sides you know as band c (it doesn't matter which is which. Following that substitute into the below formula and solve for a $a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos}(A)$
e.g	e.g
Find the missing side in the triangle below	First relabel the triangle using the instructions from above
x	Then substitute into the formula and solve $x^{2}=7^{2}+11^{2}-2 \times 7 \times 11 \times \cos (35)$ Square root both sides $\begin{aligned} & x=\sqrt{43.85} \\ & x=6.62 \mathrm{~cm} \end{aligned}$

G5: Pythagoras and Trigonometry

Use the cosine rule to find a missing angle
Find the area of a triangle of unknown height or find a side or angle when given the area of a triangle

The formula for finding the area of a non- right angled triangle is
Area $=\frac{1}{2} a b \sin (C)$ where a and b are known sides and C is a known included angle.
e.g

Label up the triangle and substitute into the formula

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \times 7 \times 11 \times \sin (35) \\
& \text { Area }=22.1 \mathrm{~cm}
\end{aligned}
$$

e.g Find the length of the unknown side given the area is $53.9 \mathrm{~cm}^{2}$

Substitute into formula and solve for x using inverse functions

$$
\begin{gathered}
53.9=\frac{1}{2} \times 9 \times x \times \sin (53) \\
x=15.0 \mathrm{~cm}
\end{gathered}
$$

G5: Pythagoras and Trigonometry

Calculate the length of a vector
Prove that two vectors are parallel
Prove that two vectors are co-linear

G5.20 Prove that two vectors are co-linear (lie in a straight line)
e.g

AOB is a triangle
P is a point on $\overrightarrow{A O}$
$\overrightarrow{A B}=2 a, \overrightarrow{A O}=6 b$ and
$\overrightarrow{A P}: \overrightarrow{P O}=2: 1$
B is the midpoint of $\overrightarrow{A C}$
Q is the midpoint of $\overrightarrow{O B}$
Prove that PQC is a straight line

To prove that two vectors are colinear, or make a straight a straight line you need to prove that two vectors are parallel as in G5.19 but also that they both go through a common point
e.g

To prove that $P Q C$ is a straight line we will show that $\overrightarrow{P Q}$ and $\overrightarrow{P C}$ are parallel and as they both go through P they will make a straight line

$$
\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=2 a-6 b
$$

$$
\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q} \text { where } \overrightarrow{P O}=\frac{\overrightarrow{A O}}{3}=2 b
$$

$$
\text { and } \overrightarrow{O Q}=\underline{\underline{\frac{\overrightarrow{O B}}{2}}}=\frac{2 a-6 b}{2}=a-3 b
$$

$$
\text { Therefore } \overrightarrow{P Q}=2 b+a-3 b=a-b
$$

$\overrightarrow{P C}=\overrightarrow{P A}+\overrightarrow{A C}$ where
$\overrightarrow{P A}=-\frac{2 \overrightarrow{A O}}{3}=-4 b$ and $\overrightarrow{A C}=2 \overrightarrow{A B}=$ $4 a$
Therefore $\overrightarrow{P C}=-4 b+4 a$ or $4 a-4 b$

That means that $\overrightarrow{P C}=4 \overrightarrow{P Q}$ which proves that these two vectors are parallel. As they also both go through the common point P that proves that PQC is a straight line

N1: Calculating with Numbers

Understand the use of place value
Multiply by a two digit number
Multiply by $10,100,1000$ etc,
Divide by a one digit number

N1.1 Understand the use of place value e.g. What value is the 6 in the number 6700	Th HT U. 6700 The ' 6 ' is in the thousands column. Therefore the value of the 6 is six thousand.
N1. 2 Multiply by a two- digit number e.g. 152×34	Draw a grid. Write the hundreds, tens and units across the top. Write the tens and units down the side. Multiply each number together. Add all the numbers from inside the box. $152 \times 34=3400+1700+68=\underline{5168}$

N1: Calculating with Numbers

Divide by a two digit number
Use BIDMAS to order operations
Add and subtract decimals
Multiply decimals

N1.5 Divide by a twodigit number $\text { e.g. } 4928 \div 32$	Draw a bus stop. The number you divide by goes on the outside. Divide the number into the first number underneath. If it does not go, write 0 on top and carry the number underneath. Divide into the next number. 3 $4928 \div 32=154$
N1. 6 Use BIDMAS to order operations $\text { e.g. } 3+4 \times 6-5$	Bracket Indices $\left.\begin{array}{l}\text { Divide } \\ \text { Multiply }\end{array}\right\}$ Do these in the order they appear $\left.\begin{array}{l}\text { Add } \\ \text { Subtract }\end{array}\right\}$ Do these in the order they appear e.g. $3+4 \times 6-5=22$ first

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { N1.7 } \\ \text { Add and subtract } \\ \text { decimals }\end{array} & \begin{array}{l}\frac{4.32}{+5.60} 9 \\ \text { e.g. } 4.32+5.6\end{array} \\ \hline \begin{array}{l}\text { N1.8 } \\ \text { Multiply } \\ \text { Decimals }\end{array} & \begin{array}{l}\text { Line up the decimal point. } \\ \text { Fill any blank spaces with } 0 . \\ \text { Add the numbers starting } \\ \text { from the right. } \\ 4.32+5.6=9.92\end{array} \\ \text { e.g. } 2.5 \times 1.1 & \begin{array}{l}\text { Take out the decimal points. } \\ \text { Multiply as with long } \\ \text { multiplication. } \\ \text { Put the decimal back in. }\end{array} \\ \text { e.g. } 2.5 \times 1.1 \\ 25 \times 11=275 \\ \text { There are } 2 \text { decimal places in the } \\ \text { question, so the answer is } 2.75 \\ 2.5 \times 1.1=2.75\end{array}\right\}$

N1: Calculating with Numbers

Divide by decimals
Order negative numbers
Add and subtract negative numbers
Multiply and divide by negative numbers

N1.9 Divide by decimals e.g. $2.84 \div 0.2$	Make the divisor into a whole number. Multiply both numbers. e.g. $2.84 \div 0.2$ (multiply both by 10) $28.4 \div 2$ $=14.1$ $2.84 \div 0.2=14.1$
N1.10 Order negative numbers e.g. order the numbers in ascending order: $-3,5,-1,-2,0$	1 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 $2>-2 \rightarrow$ We say 2 is bigger than -2 $-1<3 \rightarrow$ we say -1 is less than 3 $-3,-2,-1,0,5$

N1. 11 Add and subtract negative numbers $\begin{gathered} \text { e.g. } 8+-2 \\ 8-+2 \\ 8--2 \end{gathered}$	Remember the rules: - When subtracting go down the number line - When adding go up the number line - $8+-2$ is the same as $8-2=6$ - $8-+2$ is the same as $8-2=6$ - $8--2$ is the same as $8+2=10$
N1. 12 Multiply and divide by negative numbers $\begin{array}{r} \text { e.g. }-8 x-2 \\ -8 \div-2 \end{array}$	When multiplying negatives remember: $\begin{aligned} & +x+=+ \\ & +x-=- \\ & -x+=- \\ & -x-=+ \end{aligned}$ When dividing negatives remember: $\begin{aligned} & +x+=+ \\ & +x-=- \\ & -x+=- \\ & -x-=+ \end{aligned}$ $\begin{aligned} & 8 x-2=-16 \\ & -8 \div-2=4 \end{aligned}$

N1: Calculating with Numbers

Use one calculation to work out another
Use a calculator efficiently for simple calculations
Use a calculator efficiently for powers, roots and more complex calculations

N1. 13 Use one calculation to work out another e.g. $24 \times 36=864$, what is 2.4×3.6 ?	(Notice how the sum changes \& so does the answer) (Notice how the sum changes \& so does the answer) (Notice how the sum changes \& the answer does the opposite)
N1. 14 Use a calculator efficiently for simple calculations	Know your keys Addition: + Subtraction: - Multiply: x Divide: $\quad+$ Equals: = Brackets: ()

N1. 15 Use a calculator efficiently for powers, roots and more complex calculations	Know your keys	
		Square key
	x^{3}	Cube key
		Power key
	$\sqrt{ }$	Square root key
		Cube root key
	(-)	Negative key
		Fraction key

N2: Fractions, Decimals and Percentages

Write equivalent fractions
Simplify a fraction
Add and subtract fractions (same denominator)
Add fractions (different denominators)
Subtract fractions (different denominators)

N2. 1 Write equivalent fractions e.g. write equivalent fractions for:	To write an equivalent fraction you must multiply the numerator and denominator by the same number. $\begin{aligned} & \frac{4}{5}=\frac{16}{20}(\text { multiply by } 4) \\ & \frac{4}{5}=\frac{40}{50}(\text { multiply by } 10) \\ & \frac{4}{5}=\frac{8}{10}(\text { multiply by } 2) \end{aligned}$
N2. 2 Simplify a fraction e.g. simplify: $\frac{8}{12}$ $\frac{15}{40}$	See what number divides exactly into both the numerator and denominator e.g. $\frac{8}{12} \underset{\div 4}{\div 4} \frac{2}{3}$ e.g. $\frac{15}{40} \underset{-5}{ } \rightarrow \frac{3}{8}$

N2.3 Add and subtract fractions (same denominator) e.g. $\frac{2}{3}+\frac{2}{3}$	Add \& subtract with same denominator e.g. $\frac{2}{3}+\frac{2}{3}=\frac{4}{3}=1 \frac{1}{3}$
N2.4 Add fractions (different denominators) e.g. $\frac{1}{5}+\frac{7}{10}$	Make denominators the same then add the numerators $\text { e.g. } \begin{aligned} & \frac{1}{5}+\frac{7}{10} \\ = & \frac{2}{10}+\frac{7}{10} \\ = & \frac{9}{10} \end{aligned}$
N2.5 Subtract fractions (different denominators) $\frac{4}{5}-\frac{2}{3}$	Make denominators the same then subtract the numerators $\begin{aligned} & \frac{4}{5}-\frac{2}{3} \\ = & \frac{12}{15}-\frac{10}{15} \\ = & \frac{2}{15} \end{aligned}$

N2: Fractions, Decimals and Percentages

Multiply fractions
Find a fraction of a quantity
Divide a fraction by a whole number
Order fractions
Convert common fractions, decimals and percentages

N2.6 Multiply fractions e.g. $\frac{2}{7} \times \frac{2}{3}$	When multiplying fractions, multiply the numerators and multiply the denominators. Cancel down if possible before or after the calculation. $\frac{2}{7} \times \frac{2}{3}=\frac{4}{21}$
N2. 7 Find fraction of a quantity e.g. Find $\frac{4}{5}$ of $£ 40$	$\begin{aligned} & \frac{\mathbf{4}}{\mathbf{5}} \text { means } \div 5 \times 4 . \\ & \text { e.g. To find } \frac{4}{5} \text { of } £ 40 \\ & £ 40 \div 5 \times 4 \stackrel{\text { }}{=} £ 32 \end{aligned}$
N2. 8 Divide a fraction by a whole number e.g. $\frac{2}{7} \div 3$	Make the whole number a fraction e.g. 3 becomes $\frac{3}{1}$ Then Keep Change Flip: Keep first fraction the same Change \div to x Flip the second fraction and calculate $\frac{2}{7} \times \frac{1}{3}=\frac{2}{21}$

N2: Fractions, Decimals and Percentages Order decimals
Find a percentage of a quantity
Converting fractions to decimals

Convert a decimal to a fraction
Convert from a percentage to a decimal to a fraction Convert from a decimal to a percentage to a fraction Convert fractions to decimals to percentages

N2. 14 Convert decimal to a fraction $\text { e.g. } 0.74$	To convert see what column the number ends in. In this case the hundredths. Therefore put the number over 100 and simplify. $0.74=\frac{74}{100}=\frac{37}{50}$
N2. 15 Convert from percentage to decimal to fraction e.g. 27% 7\% 70\%	$\begin{aligned} & 27 \%=0.27=\frac{27}{100} \\ & 7 \%=0.07=\frac{7}{100} \\ & 70 \%=0.7=\frac{70}{100}=\frac{7}{10} \end{aligned}$
N2. 16 Convert from decimal to percentage to fraction e.g. 0.3 0.03 0.39	$\begin{aligned} & 0.3=30 \%=\frac{3}{10} \\ & 0.03=3 \%=\frac{3}{100} \\ & 0.39=39 \%=\frac{39}{100} \end{aligned}$
N2. 17 Convert fractions to decimals to percentages e.g. $\quad 3^{\frac{4}{5}}$	$\frac{4}{5}=\frac{80}{100}=80 \%=0.8$ Change to 100 $\frac{3}{8}=3 \div 8=0.375=37.5 \%$

N2: Fractions, Decimals and Percentages

Divide fractions
Increase by a percentage
Decrease by a percentage
Order fractions, decimals and percentages

N2. 18 Divide fractions e.g. $\frac{2}{7} \div \frac{2}{3}$	Invert fraction after \% Multiply numerator Multiply denominators. Keep Change Flip $\begin{aligned} \frac{2}{7} \div \frac{2}{3}=\frac{2}{7} & \times \frac{3}{2} \\ & =\frac{6}{14}=\frac{3}{7} \end{aligned}$
N2. 19 Increase by a percentage e.g. Increase £12 by 5\%	- To increase $£ 12$ by 5% 10% of $£ 12=£ 1.20$ 5% of $£ 12=£ 0.60$ (OR $0.05 \times 12=0.6$) Increased amount $=£ 12+£ 0.60=£ 12.60$ If using a calculator: Multiplier needed to increase a quantity. To increase a quantity by 5% Multiply the quantity by 1.05 $(100+5=105)$ $12 \times 1.05=£ 12.60$

N2.20 Decrease by a percentage. e.g. Decrease $£ 50$ by 15%	- To decrease $£ 50$ by 15% 10% of $£ 50=£ 5$ 5% of $£ 50=£ 2.50$ 15% of $£ 50=£ 7.50$ (OR $0.15 \times 50=7.5$) Decreased amount $=£ 50-£ 7.50=£ 42.50$ If using a calculator: Multiplier needed to decrease a quantity. To decrease a quantity by 15%. Multiply the quantity by 0.85 (100-15) $50 \times 0.85=£ 42.50$
N2.21 Order Fractions, Decimals, Percentages e.g. Order: $0.3, \frac{3}{5}, 40 \%, 0.56$	You need to convert them all to the same form. In this case it is easier to convert all to decimals and then order $\begin{aligned} & 0.3 \\ & \frac{3}{5}=0.6 \\ & 40 \%=0.4 \\ & 0.56 \end{aligned}$ Therefore the correct order in ascending order is: $0.3,40 \%, 0.56, \frac{3}{5}$

N2: Fractions, Decimals and Percentages
Change a recurring decimal into a fraction
Prove that a recurring decimal is equal to a fraction

N2. 22 Change a recurring decimal into a fraction e.g. Convert $=$ 0.44444444444 into a fraction	Set the recurring decimal $=x$. Multiply by a power of 10 . The power is the same as the number of digits recurring. Subtract the smaller decimal from the larger. This will give an equation. Solve the equation, leaving your answer as a fraction in its simplest terms. $\begin{aligned} & \text { Let } x=0.44444444444 \ldots \\ & 10 x=4.4444444444 \ldots \\ & 9 x=4 \\ & x=\frac{4}{9} \end{aligned}$
N2. 23 Prove that a recurring decimal is equal to a fraction e.g. prove that $0.44444=\frac{4}{9}$	A proof will need every step clearly written. Use the method shown in N2.22.

N3: Accuracy and Measures

Round to the nearest $1,10,100$ etc
Round to 1 decimal place.
Round to 1 or more decimal places
Round to 1 significant figure

Round 2548.6 to the nearest 1, 10, 100 \& 1000.	Numbers can be rounded to the nearest whole number, the nearest ten, the nearest hundred, the nearest thousand, the nearest million, and so on. If the digit you are rounding is followed by a 5, 6, 7, 8, or 9 , round the number up. If the number you are rounding is followed by a $0,1,2,3$, or 4 , round the number down.			
	1	10	100	1000
	2549	2550	2500	3000
N3. 2 Round to 1 decimal place.	Numbers can be rounded to one decimal place. If the digit in the 2nd decimal place is a $5,6,7,8$, or 9 , round the number up. If it is a $0,1,2,3$, or 4 , round the number down.			
Round to 1 decimal place:				
a) 34.64	a) 34.6			
b) 53.271	b) 53.3			
c) 102.956	c) 103.0			

N3: Accuracy and Measures

Round to 2 or more significant figures
Estimate a calculation using rounding
Calculate with metric units

N3: Accuracy and Measures

Calculate with time
Calculate with money
Convert units of time

N3.8	For adding time:
Calculate with time.	1) Add the hours
	2) Add the minutes
	3) It the minutes are 60 or more subtract 60 from the minutes and add 1 hour.
What is $2: 45+1: 20 ?$	Add the hours, $2+1=3$.
	Add the minutes $45+20=65$.
	The minutes are more than 60 , so subtract 60 from the minutes,
	$65-60=5$, and add 1 to the hours,
	$3+1=4$.
	The answer is 4:05.
	For subtracting time:
	1) Subtract the hours
	2) Subtract the minutes
	3) If the minutes are negative add 60 to the minutes and subtract 1 hour.
What is 9:15-3:35?	Subtract the hours, 9-3 = 6
	Subtract the minutes 15-35=-20
	The minutes are negative, so add
	60 to the minutes, $-20+60=40$,
	and subtract 1 from the hours, 6 - $1=5 .$
	The answer is 5:40.

N3. 9 Calculate with money.	Use the same method of adding numbers that have 2 decimal places.
Richard buys a notebook that costs £6.78 and a pen that costs £4.19. Work out the total cost.	$\begin{array}{r} 6.78 \\ +4.19 \\ \hline 10.97 \\ \hline 1 \end{array}$ Total cost = $£ 10.97$
N3.10 Convert units of time. How many seconds are there in 1 week?	```1 century = 100 years 1 decade = 10 years 1 year = 365 days (except leap years) 1 day = 24 hours 1 hour = 60 minutes 1 minute = 60 seconds 7\times24\times60 x 60=604,800 seconds```

N3: Accuracy and Measures

Write the upper bound and lower bound of a number or measurement
State an error interval for a rounded number
State an error interval for a truncated number
Calculate using the compound measure speed

N3. 11 Write the upper bound and lower bound of a number or measurement	Bounds tell us the largest possible value of a number and the smallest possible value.
What is the lower and upper bound of 23 cm if rounded to the nearest centimetre?	
N3. 12 State an error interval for a rounded number	Lower and upper bounds can be written as error intervals with the use of inequalities. Look out for the word "rounded" when doing this type of error interval.
The mass m of a table is 45.7 kg rounded to 1dp. Write the error interval for this.	$45.65 \leq m<45.75 \mathrm{~kg}$

N3: Accuracy and Measures

Calculate using the compound measure density
Use bounds to find the upper limit or lower limit of a calculation

N3. 15 Calculate using the compound measure density.	Use this triangle to help you to remember the different formulae. Cover up the quantity that you want to calculate.
	$\begin{aligned} & D=M \div V \\ & M=D \times V \\ & V=M \div D \end{aligned}$
What is the density of a rod of aluminium that has a mass of 575.4 g and a volume of $210 \mathrm{~cm}^{3}$	Density $=575.4 \div 210=2.74$ $\mathrm{g} / \mathrm{cm}^{3}$

N3. 16 Use bounds to find the upper limit or lower limit of a calculation	
If a is rounded to the neares	x 1.8 is rounded to 1 dp .
Upper bound $=\mathrm{a}+1 / 2 \mathrm{x}$.	$\begin{aligned} \text { Upper bound } & =1.8+1 / 2(0.1) \\ & =1.85 \end{aligned}$
Lower bound = a $-1 / 2 \mathrm{x}$.	$\begin{aligned} \text { Lower bound } & =1.8-1 / 2(0.1) \\ & =1.75 \end{aligned}$
Calculating using bounds.	
Adding:	
Maximum = upper + upper	$1.85+1.85=3.70$
Minimum = lower + lower	$1.75+1.75=3.50$
Subtracting:	
Maximum = upper - lower	$1.85-1.75=0.10$
Minimum = lower - upper	$1.75-1.85=-0.10$
Multiplying:	
Maximum = upper x upper	$1.85 \times 1.85=3.4225$
Minimum = lower x lower	$1.75 \times 1.75=3.0625$
Dividing:	
Maximum = upper \div lower	$1.85 \div 1.75=1.06$ (2 dp)
Minimum = lower \div upper	$1.75 \div 1.85=0.95$ (2 dp)

N4: Factors, Multiples and Primes
Understand the term factor
Understand the term Prime
Understand the term multiples
Understand the term square

N4. 1 Understand the term 'factor'. e.g. define a factor.	FACTORS are what divides exactly into a number Factors of 12 are: 1122634
N4. 2 Understand the term 'prime'. e.g. define a prime.	PRIMES have exactly TWO factors Factors of 7 are 1 and 7 7 is PRIME
N4.3 Understand the term 'multiple. e.g. define a multiple.	Multiples are what you get when you multiply a number by successive numbers Multiples of 12 are: $\begin{aligned} & 12(=12 \times 1), \\ & 24(=12 \times 2), \\ & 36(=12 \times 3), \text { and so on. } \end{aligned}$
N4.4 Understand the term 'square'. e.g. define a square number.	SQUARES are the result of multiplying a number by itself $\begin{aligned} & 3 \times 3=3^{2}=9 \\ & 8 \times 8=8^{2}=64 \end{aligned}$ $9 \& 64$ are square numbers

Understand the term cube
Calculate the power of a number
Calculate the root of a number

N4.5 Understand the term 'cube'. e.g. define a cube number.	Cubes are the result of multiplying a number by itself and by itself again $\begin{aligned} & 2 \times 2 \times 2=2^{3}=8 \\ & 4 \times 4 \times 4=4^{3}=64 \end{aligned}$ 8 \& 64 are cube numbers
N4.6 Calculate the power of a number. e.g. Calculate 4^{2}. Calculate 5^{3}. Calculate 3^{4}.	4^{2} is 4 squared, or the square of It means $4 \times 4=16$ 5^{3} is 5 cubed, or the cubes of 5 . It means $5 \times 5 \times 5=125$ 3^{4} is 3 to the power of 4 . It means $3 \times 3 \times 3 \times 3=81$
N4. 7 Calculate the root of a number. e.g. Calculat $\sqrt{16}$ $\sqrt[3]{125}$ $\sqrt[4]{81}$	The inverse operation for 'power' is 'root' $\begin{gathered} \sqrt{16}=4 \\ \sqrt[3]{125}=5 \quad \sqrt[4]{81}=3 \end{gathered}$ There are keys on the calculator to all of these

N4: Factors, Multiples and Primes

Find factors of a number
Find multiples of a number
Identify a prime number

N4.8 Find Factors of a number. e.g. find the factors of 24 .	FACTORS are what divides exactly into a number You can find factors using factor pairs: Factors of 24 $\begin{aligned} & 1 \times 24 \\ & 2 \times 12 \\ & 3 \times 8 \\ & 4 \times 6 \end{aligned}$ 1, 2, 3, 4, 6, 12 and 24 are all factors of 24
N4.9 Find Multiples of a number. e.g. list the first 6 multiples of 5 .	Multiples are the numbers in a times table The first 6 multiples of 5 are... $5,10,15,20,25,30$

N4.10 Identify a Prime Number. e.g. list the prime numbers less than 30.	Prime numbers only have two factors, 1 and themselves. These are the only numbers you can divide into a prime number Factors of 17 1×17 only $\begin{aligned} & 17 \div 1=17 \\ & 17 \div 17=1 \end{aligned}$ This means 17 is a prime number. 2 is the only even prime number. 1 isn't a prime number
	The prime numbers less than 30 are... $\begin{aligned} & 2,3,5,7,11,13,17,19,23, \\ & 29 \end{aligned}$

Find the highest common factor of two or more numbers
Find the lowest common multiple of two or more numbers

N4. 11 Find the Highest Common Factor (HCF) of two or more numbers. e.g. find the HCF of 36 and 54.	Find the factors of the numbers. The highest common factor (HCF) is the biggest factor that is common to both. $\begin{array}{ll} \text { HCF of } \mathbf{3 6} \text { and } 54 \\ \hline & \text { Factors of } 54 \\ \text { Factors of } 36 & 1 \times 54 \\ 1 \times 36 & 2 \times 27 \\ 2 \times 18 & 3 \times 18 \\ 3 \times 12 & 6 \times 9 \\ 4 \times 9 & \\ 6 \times 6 & \end{array}$ 18 is the biggest factor of both, and so... the HCF of 36 and 54 is 18 You would never be asked to find the lowest common factor as 1 is a factor of all numbers. This means there will always be an HCF for two or more numbers.

N4.12 Find the Lowest Common Multiple (LCM) of two or more numbers. e.g. find the LCM of 9 and 12.	List the multiples (times tables) of the numbers. The Lowest Common Multiple (LCM) is the first number common to both (in both lists). LCM of 9 and 12
	Multiples of 9 $9,18,27,36,45,54,63,72$, $90 \ldots$ Multiples of 12 $12,24,36,48,60,72,84 \ldots$.
	The LCM of 9 and 12 is 36 (note that 72 is also common to both, but this isn't the lowest)
You would never be asked for the highest common multiple, as there are an infinite number of common multiples.	

N4: Factors, Multiples and Primes
Write a number as its product of prime factors Write large numbers in standard form
$\left.\begin{array}{|l||l|}\hline \begin{array}{l}\text { N4.13 } \\ \text { Write a number as } \\ \text { its product of prime } \\ \text { factors. }\end{array} & \begin{array}{l}\text { To find the product of prime } \\ \text { factors for a number, } \\ \text { produce a factor tree. Stop } \\ \text { when you get to prime } \\ \text { numbers, which you circle }\end{array} \\ \text { product of its prime } \\ \text { factors. }\end{array} \quad \begin{array}{l}\text { Product of prime factors } \\ \text { for 36 }\end{array}\right]$

N4. 14 Write large numbers in standard form. e.g.	Standard Form is a shorthand method for writing large and smal numbers. Large Numbers in Standard Form
Write 50000 in standard form	$5 \times 10^{4}=5000$
Write 320000 in standard form	$3.2 \times 10^{5}=320000$ 46×10^{3} not standard form $\begin{aligned} & =4.6 \times 10^{4} \\ & =46000 \end{aligned}$

N4: Factors, Multiples and Primes
Write small numbers in standard form
Write a number in standard form as a regular number

N4.15	
Write small numbers in standard form.	Standard Form is a shorthand method for writing large and small numbers.
e.g. Write 0.005 in	Small Numbers in Standard Form
Write 0.000041 in standard form	
	$\begin{aligned} & 4.1 \times 10^{-5}=0.00004 \\ & 32 \times 10^{-4} \text { not standard form } \\ & =3.2 \times 10^{-3} \\ & =0.0032 \end{aligned}$

N4. 16 Write a number given in standard form as a regular number e.g. Write 5×10^{4} as a number Write 5×10^{-3} as a number.	Positive Powers 5×10^{4} $=5 \times 10000$ $=50000$ The digit 5 has moved 4 places to the left. Positive power moves to the left by the number of places equal to the index number Negative Powers $5 \times 10^{-3}=$ 0.005 The digit moves 3 places to the right. Negative power moves to the left by the number of places equal to the number in the index.

N4: Factors, Multiples and Primes

Apply the law of indices for multiplying powers Apply the law of indices for dividing powers Apply the law of indices for powers of powers Evaluate fractional indices

N4: Factors, Multiples and Primes

Evaluate negative indices
Evaluate indices involving both negative and fractional
Simplify a surd
Simplify a surd expression

N4.21 Evaluate negative indices e.g. evaluate 4^{-2} 10^{-3}	Negative indices are equivalent to fractions and decimals. $\begin{aligned} & 4^{-2}=\frac{1}{4^{2}}= \\ & \frac{1}{16} 10^{-3}=\frac{1}{10^{3}}= \\ & \frac{1}{1000}=0.001 \end{aligned}$ Give your answer as a fraction unless told otherwise.
N4.22 Evaluate indices involving both negative and fractional e.g. evaluate $16^{-\frac{3}{2}}$	$\begin{gathered} 16^{-\frac{3}{2}} \begin{array}{r} \text { Turn into a fraction. } \\ \text { Denominator is the } \\ \text { root, numerator the } \end{array} \\ =\frac{1}{(\sqrt{16})^{3}}=\frac{1^{3}}{\text { power. }} \end{gathered}$

N4.23 Simplify a surd e.g. simplify $\sqrt{18}$ $\sqrt{75}$	$\sqrt{25}$ is NOT a surd because it is exactly 5 . $\sqrt{3}$ is a surd because the answer is not exact. A surd is an irrational number To simplify surds look for square number factors $\begin{aligned} \sqrt{18} & =\sqrt{9} \times \sqrt{2}=3 \sqrt{2} \\ \sqrt{75} & =\sqrt{25} \times \sqrt{3}=5 \sqrt{3} \end{aligned}$
N4. 24 Simplify a surd expression e.g. simplify $\begin{aligned} & 5 \sqrt{3}+2 \sqrt{3} \\ & 5 \sqrt{3} \times 2 \sqrt{3} \end{aligned}$	$5 \sqrt{3}+2 \sqrt{3}=7 \sqrt{3}$ When adding the root stays the same $\begin{array}{r} 5 \sqrt{3} \times 2 \sqrt{3}=10 \sqrt{9} \\ =10 \times 3=30 \end{array}$

N4: Factors, Multiples and Primes
Rationalise the denominator of a fraction
Multiply two surd brackets together

N4.25 Rationalise the denominator of a fraction (simple surd)	Rationalising the denominator of a surd is removing the surd from the e.g. $\frac{3}{\sqrt{2}}$ Rationalise multiplying the numerator and denominator of that fraction by the denominator.
In general:	
$\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}$ Example:	
$\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$ These are equivalent fractions	

N4. 26 Multiply two surd brackets together e.g. simplify fully $(5-\sqrt{3})(1+\sqrt{3})$	Multiply surd brackets together in the same way you would in algebra with double brackets to form a quadratic expression. Using the grid method is the most straightforward way. Example: Simplify fully $(5-\sqrt{3})(1+\sqrt{3})$
	5 $5 \sqrt{3}$ 5 5
	$-\sqrt{3}$ $-\sqrt{3}$ -3
	$=5-\sqrt{3}+5 \sqrt{3}-3$ Collecting terms gives... $=4 \sqrt{3}+2$

N4: Factors, Multiples and Primes

Rationalise the denominator of a fraction (surd expression)
Calculate with numbers in standard form

N4.27 Rationalise the denominator of a fraction (surd expression) e.g. rationalise this surd $\frac{5}{3-\sqrt{2}}$	Rationalising the denominator of a surd is removing the surd from the denominator of a fraction by multiplying the numerator and denominator of that fraction by the denominator. $\begin{aligned} & \frac{5}{3-\sqrt{2}} \times \frac{(3+\sqrt{2)}}{(3+\sqrt{2)}} \\ & =\frac{5(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})} \\ & =\frac{15+5 \sqrt{2}}{9+3 \sqrt{2}-3 \sqrt{2}-2} \\ & =\frac{15+5 \sqrt{2}}{7} \end{aligned}$

N4.28	When multiplying in
Calculate with numbers in standard form (1)	standard form, use the laws of indices for the powers, while multiplying the whole
e.g. calculate, giving your answer in	$\begin{aligned} & \left(3 \times 10^{4}\right) \times\left(2 \times 10^{6}\right)=6 \times \\ & 10^{10} \end{aligned}$
standard form,	$\left(4 \times 10^{4}\right) \times\left(6 \times 10^{6}\right)$
$\left(3 \times 10^{4}\right) \times(2 \times$	$=24 \times 10^{10}$
106)	$=2.4 \mathrm{x}$
$\begin{aligned} & \left(4 \times 10^{4}\right) \times(6 x \\ & \left.10^{6}\right) \end{aligned}$	10^{11}
	Make sure numbers are in standard form
	When dividing in standard form, use the laws of indices for the powers, while dividing the whole numbers as usual.
	$\begin{aligned} & \left(8 \times 10^{9}\right) \div\left(4 \times 10^{3}\right)=2 x \\ & 10^{6} \end{aligned}$
$\begin{aligned} & \left(8 \times 10^{9}\right) \div(4 x \\ & \left.10^{3}\right) \end{aligned}$	

N4: Factors, Multiples and Primes

Calculate with numbers in standard form continued

N4.28	When dividing in standard form,
Calculate with numbers in standard form (2)	use the laws of indices for the powers, while dividing the numbers as usual. 1.2×10^{12}
e.g. Calculate, giving your answer in	$\begin{aligned} 2.4 \times 10^{4} & =0.5 \times 10^{8} \\ & =5 \times 10^{7} \end{aligned}$
stal $\frac{1.2 \times 10^{12}}{2.4 \times 10^{4}}$,	Make sure numbers are in standard form
	When adding and subtracting in standard form, turn the numbers given in standard form back into ordinary numbers first, add or subtract them, then convert your answer to standard form.
$\left(3.5 \times 10^{4}\right)+\left(6.2 \times 10^{5}\right)$	$\left(3.5 \times 10^{4}\right)+\left(6.2 \times 10^{5}\right)$
	$=35000+620000$
	$=655000$
	$=6.55 \times 10^{5}$

P1: Ratio and Proportion

Use proportion to describe a part of a whole
Use a ratio and a quantity to find another quantity
Simplify a ratio
Write a ratio in the form 1 :n

P1.1 Use proportion to describe a part of a whole. Describe the proportion of the shape that is white	One white square out of 4 squares altogether. So as a fraction 1 Part is the numerator 4 Whole is the denominator Proportion can also be a decimal or percentage. The fraction needs to be converted. As a decimal 0.25 As a percentage 75\%
P1.2 Use a ratio and a quantity to find another quantity e.g. The ratio of squash to water is 1:7. How much squash do I need for 50 ml of squash	

P1.3 Simplify a ratio e.g. simplify $12: 15$ Simplify 30cm:1m	$\begin{aligned} & \text { e.g. } 12: 15 \\ & =\frac{4: 5}{30 \mathrm{~cm}: 1 \mathrm{~m}} \\ & \text { e.g. } \\ & =30: 100 \\ & \Rightarrow 3: 1 \end{aligned}$ Divide both sides by a common factor. Convert the amounts to the same units if required,
P1.4 Write a ratio in the form 1:n e.g. Write $2: 5$ in the form 1:n	$\begin{aligned} & \text { e.g. } 2: 5 \text { (}(=\text { both parts by } 2) \\ & =>1: 2.5 \end{aligned}$

P1: Ratio and Proportion

Use a ratio to solve a problem, turning one ratio into another equivalent
ratio
Changing an amount in proportion. The unitary method
Change an amount to compare two values

	e.g.
Use ratio to solve a problem, turning one ratio into another equivalent ratio.	A model ship is made using scale 1:600. The model ship length is 40 cm . What is the real length of the ship?
e.g. A model ship is made using scale 1:600. The model ship length is 40 cm . What is the real length of the ship?	Want to find what 40 cm will be. So multiply 1 by 40 gives 40 . Do the same to the other side of the ratio. Convert answer into sensible units. $24000 \mathrm{~cm}=240 \mathrm{~m}$

P1. 6 Changing an amount in proportion. The unitary method. e.g. If 6 books cost £22.50, how much will 11 books cost?	It is called the unitary method because you find what 1 would be before multiplying up to find the amount you need.
P1.7 Change an amount to compare two values. A best buy problem. e.g A pack of 5 pens cost £6.10 A pack of 8 pens cost $£ 9.20$ Which is the best value?	Find the cost or value of one item in each case. Divide the cost by how many. 5 cost $£ 6.10$, so 1 costs $£ 6.10 \div 5$ So 1 pen costs $£ 1.22$ 8 cost $£ 9.20$, so 1 costs $£ 9.20 \div 8$ So 1 pen costs $£ 1.15$ The pack of 8 pens is the best value as the price of 1 pen is lower than in a pack of 5

P1: Ratio and Proportion

Reading a conversion graph
Dividing into a given ratio
Use multiplier to increase by a percentage

P1. 10	e.g
Dividing into a given ratio	A and B share some sweets in ratio 3:2
Using a quantity and a number of shares to find another quantity.	A gets 12 sweets, how many sweets does B get? so 3 shares $=12$ 1 share $=12 \div 3=4$
e.g A and B share some sweets in ratio 3:2 A gets 12 sweets, how many sweets does B get?	B gets $2 \times 4=8$ sweets
P1.11 Use multiplier to increase by a percentage. e.g. What is the multiplier to increase an amount by 5% ?	e.g. To increase a quantity by 5% Amount Increased from 100\% by 5\% $\text { so } 100+5=105$ 105% as a decimal $=1.05$ Multiply the quantity by 1.05

P1: Ratio and Proportion

Use multiplier to decrease by a percentage
Calculate the original amount before a percentage change (Reverse
percentage)
Plotting a conversion graph

P1.12	e.g.
Use multiplier to	To decrease a quantity by 5%
decrease by a	Amount decreases from 100\% by 5\%
eg	so 100-5 = 95
What is the	95\% as a decimal $=0.95$
multiplier to decrease an amount by 5% ?	Multiply the quantity by 0.95
P1.13	e.g.
Calculate the	A bag costs $£ 40$ in a sale where everything has 20% off
before a percentage	What was the original price of
change.	the bag?
(Reverse	If 20% has been taken off, then
Percentage)	the bag is 80% of its original
e.g.	value.
A bag costs £40 in a	$(100-20=80)$
sale where	So the original multiplier was 0.8
everything has 20\%	for 80%
off	Original $\times 0.8=40$
What was the	So
original price of the	Original $=40 \div 0.8=£ 50$

P1.14 Plotting Conversion Graphs e.g. Plot a conversion graph for Kilograms to pounds. If $1 \mathrm{~kg}=2.2 \mathrm{lbs}$	e.g. Plot a conversion graph for Kilograms to pounds. If $1 \mathrm{~kg}=2.2 \mathrm{lbs}$ Draw suitable axes with Kilograms on one axis and Pounds on the other axis. As $1 \mathrm{~kg}=2.2 \mathrm{lbs}$, plot this point on your graph. You need two more points. Double both values $2 \mathrm{~kg}=4.4 \mathrm{lbs}$, plot this point Make one value zero, what happens to the other? Okg = Olbs, plot this point Draw a straight line through the three points with a ruler.

P2 Proportion and Repeated Percentage Change

Understand how direct proportion affects two variables
Understand how inverse proportion affects two variables
Solve problems of direct proportion

P2. 1 Understand how direct proportion affects two variables e.g. 1 two variables A and B are in direct proportion to one another what happens as A increase?	If A and B are in direct propotion. Then If A increases then B increases If A decreases then B decreases If A is multiplied by 2 then B is multiplied by 2. If 1 worker costs $£ 200$ to hire Then 2 workers cost $£ 400$ to hire The cost to hire is in direct proportion to how many workers are hired
P2. 2 Understand how inverse proportion affects two variables e.g. If two variables A and B are in direct proportion to one another what happens as A increase?	If A and B are in inverse propotion. Then If A increases then B decreases If A decreases then B increases If A is multiplied by 2 then B is divided by 2. If 1 worker takes 2 hours to complete a job Then 2 workers will take 1 hour to complete the same job. The time taken to complete a job is inversely proportional to the amount of workers..

P2.3 Solve Problems of Direct Proportion e.g. The distance you walk is directly proportional to the time you spend walking. If I can walk 9 miles in 3 hours, how far can I walk in 5 hours?	Use Unitary Method to find how far in one hour. Divide by three then multiply by	(

P2 Proportion and Repeated Percentage Change
Solve problems of inverse proportion
Use similarity to find missing lengths

| P2.6
 Solve Problems of
 Inverse Proportion | Find how long it will take for 1 worker. |
| :--- | :--- | :--- |
| The amount of time
 you spend on a job
 is inversely
 proportional to the
 amount of people
 doing the job.
 If it takes 5 workers
 6 days to build a
 shed. How long will
 it take 2 workers? | 5 Workers : 6 Days
 Because it is inverse proportion
 what you do to one value, you
 do the inverse to the other. So
 when you divide the number of
 workers to find 1 worker, you
 multiply the time by 5 |

P2 Proportion and Repeated Percentage Change

Write the formula for a repeated percentage change
Use calculations of repeated percentage change
Recognise graphs of exponential growth and decay

P2.8 Write the formula for a repeated percentage change	Find the multiplier for the percentage increse or decrease. Remember Increase by 20\% then multiplier is 1 Decrease by 20\% the multiplier is 0.0
	Final amount $=$ (multiplier) amber fyears x initial
amount	

```
P2.10
Recognise Graphs
of Exponential
Growth and
Exponential Decay
    e.g. What would
    a graph of
    bacteria growth
    look like?
    e.g. What would
    a graph of
    radioactive decay
    look like?
```

e.g. What would a graph of bacteria growth look like? This would be a repeated percentage increase.

e.g. What would a graph of radioactive decay look like? This would be a repeated percentage decrease

P2 Proportion and Repeated Percentage Change

To find a formula for two variables in direct proportion
To find a formula for two variables in inverse proportion

P2. 11 To Find a Formula for Two Variables in Direct Proportion e.g. y is directly proportional to x . When $y=21, x=$ 3. Find a formula for y in terms of x	The symbol \square means 'varies as' or 'is proportional to'. Direct proportion If $y \quad x$ then $y=k x$ If $y \quad x^{2}$ then $y=k x^{2}$ If $y \square x^{3}$ then $y=k x^{3}$ e.g. y is directly proportional to x. When $y=21, x=3$. $\mathrm{y} \square \mathrm{x}$ therefore $\mathrm{y}=\mathrm{kx}$ $21=k x$ 3 $k=7$ $\text { so, } y=7 x$

P2.12 To Find a Formula for Two Variables in Inverse Proportion e.g. a is inversely proportional to b . When $a=12$, $\mathrm{b}=4$. Find a formula for a in terms of b	The symbol \square means 'varies as' or 'is proportional to'. Inverse proportion If $y \quad 1 / x$ then $y=k / x$ If $y \quad 1 / x^{2}$ then $y=k / x^{2}$ If $y \quad 1 / x^{3}$ then $y=k / x^{3}$ e.g. a is inversely proportional to b. When $\mathrm{a}=12$, $\mathrm{b}=4 .$ Find a formula for a in terms of b a $1 / b$ therefore $a=k / b$

P2 Proportion and Repeated Percentage Change

Finding the multiplier or percentage change for a repeated change
Use trial and error to find the year term of a repeated change

P2. 13 Finding the multiplier or percentage change for a repeated percentage change. e.g. A savings account had £2000 in it, after three years of interest, the amount in the account was £2315.25. What was the percentage interest rate on the savings account?	Formula for repeated percentage change is Final amount = (multiplier)number of years x initial amount e.g. A savings account had $£ 2000$ in it, after three years of interest, the amount in the account was $£ 2315.25$. What was the percentage interest rate on the savings account? Initial amount = 2000 Final amount $=2315.25$ Number of years $=3$ Substitute into the formula 2315.25=(multiplier) ${ }^{3} \mathrm{x}$ 2000 Divide by 2000 $1.157625=(\text { multiplier })^{3}$ Take cube root of both sides to undo the power $1.05=$ multiplier $1.05=105 \%$ So increase has been 5% each year.

P2. 14 Use Trial and Error to find the year term of a repeated percentage change e.g. A savings account had $£ 2000$ in it, after x years of interest of 5% PA, the amount in the account was £2315.25. How long were the savings in the account?	Formula for repeated percentage change is Final amount = (multiplier)number of years x initial amount e.g. A savings account had $£ 2000$ in it, after x years of interest of 5\% PA, the amount in the account was £2315.25. How long were the savings in the account? Initial Amount = 2000 Percentage interest per year =5\% $100+5=105$ So multiplier $=1.05$ Substitute these into the formula Keep trying the next value of x. Final amount $=1.05^{\times} \times 2000$ Try $x=1$, then $1.05 \times 2000=2100$ (not the final amount) so try $\mathrm{x}=2$ $1.05^{2} \times 2000=2205$ (not the final amount) so try $\mathrm{x}=3$ $1.05^{3} \times 2000=2315.259$ correct amount) So $x=3$ years

P2 Proportion and Repeated Percentage Change

Find the average or instantaneous rate of change from graph
What is the rate of change where $\mathrm{x}=0$

P2.16
What is the rate of change where $\mathrm{x}=$ 0 ?

The instantaneous rate of change is the gradient at a point on the curve.
Rate of change at a point on a curve = gradient of the tangent
Draw a tangent to the curve at that point and find the gradient of the tangent. Two points on the tangent are $(0,-1)$ and $(1,1)$
Calculate Gradient

$$
=\frac{1--1}{1-0}=2
$$

Rate of change at $x=0$ is 2

P2 Proportion and Repeated Percentage Change

Interpret the rate of change of graph
Using similarity to find missing areas
Using similarity to find missing volumes

P2. 17 Interpret the rate of change of graph e.g. What would the rate of change represent on A) A graph of number of bacteria against time. B) A graph of the number of radioactive atoms In a substance against time. C) A Distance / Time graph D) A Speed / Time graph	The rate of change of a graph is its gradient. A gradient is how much the y-axis value changes for every one value on the x-axis. e.g. What would the rate of change represent on A) A graph of number of bacteria against time. B) A graph of the number of radioactive atoms In a substance against time. C) A Distance / Time graph D) A Speed / Time graph Answers A) The rate of growth of the bacteria B) The rate of decay of the radioactive substance C) The rate of change of distance over time which is SPEED D) The rate of change of speed over time which is ACCELERATION

P2.18	If Length scale factor $=k$
Using similarity to	Then Area scale factor $=\mathbf{k}^{\mathbf{2}}$
find missing areas.	If height of shape A is 4 cm , height
If height of shape	of shape B is 6 cm
A is 4 cm , height of shape B is 6 cm	A and B are similar shapes. If the surface area of A is $20 \mathrm{~cm}^{2}$ what is
A and B are similar shapes. If the	the surface area of B ?
surface area of A	Length scale factor $=6 \div 4=1.5$
is $20 \mathrm{~cm}^{2}$ what is the surface area of	Area scale factor $=1.52=2.25$
B ?	Surface area of $B=20 \times 2.25=$ $45 \mathrm{~cm}^{2}$
P2. 19	If Length scale factor $=k$
Using similarity to find missing volumes	Then Volume scale factor $=\mathbf{k}^{\mathbf{3}}$
If height of shape	If the surface area of A
A is 4 cm , height of shape B is 6 cm	is $10 \mathrm{~cm}^{3}$ what is the volume of B ?
A and B are similar	Length scale factor $=6 \div 4=1.5$
shapes. If the surface area of A	Volume scale factor $=1.5^{3}=3.375$
is $10 \mathrm{~cm}^{3}$ what is the volume of B ?	Volume of $B=10 \times 3.375=33.75 \mathrm{~cm}^{3}$

S1: Data Handling

Understand how to collect data
Understand the concept of bias when collecting data
Reading data from a table

S1.1 Understand how to collect data e.g. describe different methods of data collection.	Ways to collect data: Data collection sheets which are also called tally charts. (see S1.4) Two-way tables are a way of sorting data from more than one category, so that the frequency of each category can be seen quickly and easily. Questionnaires are used for most surveys. They have questions and choices of responses.
S1.2 Cnderstand the concept of bias collecting data	Bias occurs when one answer is favoured over another. It can lead to unreliable results.
e.g. explain what is meant by bias.	Data collection should be planned to minimise bias.
Random samples minimise	
bias.	

S1: Data Handling

Collect data in a tally chart
Draw a bar chart
Interpret a bar chart
Draw a pictogram

S1: Data Handling

Interpret a pictogram
Calculate a mean from a list of numbers
Find the mode of a list of numbers
Find the median for a list of numbers

S1.8 Interpret a pictogram e.g. how many Golden Delicious were there?		
		to count quantities.
		For Golden Delicious: 2 whole apples = 20; 1 half apple $=5$; 25 apples in total.
Varities of Apples in food store		
Red Delicious	- 0	
Golden Delicious	- 0	
Red Rome	$\cdots \cdots$	
Mclintosh	-	
Jonathan	000	
$\bigcirc=10$ apples $Q=5$ apples		
S1.9 Calculate a mean from a list of numbers e.g. calculate the mean of $3,4,6,7$.		Add all the numbers. Divide by how many there are.
		Mean of 3, 4, 6, 7
		$3+4+6+7$
		$\frac{4}{4}=5$
		The mean is 5

S1: Data Handling

Find the range of a list of numbers
Compare data distributions using averages and range
Draw a stem and leaf chart
Interpret a stem and leaf chart

S1.12 Find the range of a list of numbers			The Range
			the largest and smallest value. It is the
e.g. what is the range of $1,2,3,4$?			largest value minus the smallest
			value. $4-1=3$, so the range is 3 .
$-4,2,7,8 ?$			$8--4=8+4=12$, so 12 is the
			range.
S1.13			To compare two or more data sets
Compare data			you must;
distributions using			Compare an average for each data
averages and range			set,
			Compare the spread of each da
e.g. compare the			set.
heights of boys and girls using this table.			Comments should relate to the context of the data sets.
	B	G	The boys are taller, on averag
Mean	1.75 m	1.69 m	than the girls since the mean
Range	32 cm	25 cm	larger for the boys
			The heights of the girls are more consistent since the range for the girls is lower.

S1.14 Draw a stem and leaf chart e.g. draw a stem and leaf chart for these data; $\begin{aligned} & 8,8,9,11,12,13, \\ & 14,14,18,19,20, \\ & 23,25,25,27,27, \\ & 28,32,32,33,33, \\ & 36,36,38,38,41, \\ & 42,43,43,45 \end{aligned}$	Make sure data is in order. Include a key. This number here is 42 .
S1.15 Interpret a stem and leaf chart. e.g. find the median, range and mode from this stem and leaf. Key: $3 \mid 1$ means 31	Key: 3\|1 means 31 Stem Leaf 1 9 9 2 0 4 7 8 3 1 2 2 2 6 4 0 5 5 5 5 Median $=$ middle number $=32$. Mode $=32$ (this occurs three times) Range $=55-19=36$.

S1: Data Handling

Construct a pie chart
Interpret a pie chart
Understand the different types of data

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { S1.18 } \\ \text { Understand the } \\ \text { different types of data } \\ \text { e.g. describe the } \\ \text { following data types. }\end{array} & \begin{array}{l}\text { Data is a collective name for } \\ \text { information recorded for statistical } \\ \text { purposes. } \\ \text { There are many types of data. }\end{array} \\ \text { Qualitative } & \begin{array}{l}\text { Qualitative data can only be written in words, } \\ \text { e.g. the colours of cars. } \\ \text { Quantitative data can be written in numbers, }\end{array} \\ \text { Discrete } & \begin{array}{l}\text { Quantineights of children. } \\ \text { Discrete data is numerical data that } \\ \text { are usually integer values, e.g. the } \\ \text { number of children in a classroom. }\end{array} \\ \text { Continuous } \\ \text { Continuous data is numerical data that can be } \\ \text { shown in decimals, e.g. the weights of babies. } \\ \text { Primary data is data collected from the original } \\ \text { source, e.g. via a survey. } \\ \text { Secondary data is data collected from other } \\ \text { sources, e.g. national statistics. }\end{array}\right\}$

S1: Data Handling

Understand how to take and use a sample of data
Find the median and quartiles from a list of data

S1.19 Understand how to take and use a sample of data.	A sample should be: a small group of the population, an adequate size, representative of the population. e.g. describe how to take a sample.
Simple random sampling Everyone has an equal chance of being part of the sample. Systematic sampling	
Arranged in some sort of order. e.g. every 10th item in the population.	

S1.20 Find the median and quartiles from a list of data e.g. find the median, lower quartile, upper quartile and interquartile range from the data set; $1,4,7,8,9,13,16$	n is the number of items in the data set (in this case 7 items). Write the values in order. Median is the $\frac{(n+1)}{2}$ th value. $\frac{7+1}{2}=4.4^{\text {th }}$ item is 8 . Lower Quartile (LQ) is the $\frac{(n+1)}{n} t h$ value. $\frac{74}{\frac{7+1}{4}}=2.2^{\text {nd }}$ item is 4 . Upper Quartile (UQ) is the $\frac{3(n+1)}{4}$ th value. $\frac{3\left(7^{4}+1\right)}{2}=6.6^{\text {th }}$ item is 13 . Interquartile Range (IQR) $\mathrm{IQR}=\mathrm{UQ}-\mathrm{LQ}=13-4=9 .$

S1: Data Handling

Compare distributions by comparing mean and range in context of the distributions
Draw a two way table
Interpret a two way table

S1.21 Compare distributions by comparing the mean and the range in context of the distributions e.g. compare the heights of boys and			To compare two or more data sets you must: Compare an average for each data set, Compare the spread of each data set, Comments should relate to the context of the data sets.				
S1.22 Draw a two-way table e.g. draw a two way table for data about how boys and girls travel to school.			The IQR covers the middle 50%. Two-way tables are a way of sorting data with two variables, showing the frequency of each category quickly and easily. To sort data by category e.g. how students travel to school				
				Bus	Walk	Cycle	Tot
			Boys				
			Girls				
			Total				

S1: Data Handling

Understand how to take a stratified sample

S1.24
Understand how to
take a stratified
sample

e.g. given the table
below, show how to

take a stratified \quad\begin{tabular}{|c|c|}

\hline Language \& | Number of |
| :---: |
| students |

\hline Greek \& 145

\hline Spanish \& 121

\hline German \& 198

\hline French \& 186

\hline Total \& 650

\hline
\end{tabular}

Sample is divided into groups according to criteria. These groups are called strata.
A simple random sample is taken from each group in proportion to its size using the formula:

Number from each group $=$ $\frac{\text { stratum size }}{\text { population }} \mathrm{x}$ sample size.

Number from Greek
$=\frac{145}{650} \times 70 \approx 16$
Number from Spanish
$=\frac{121}{650} \times 70 \approx 13$
Number from German
$=\frac{198}{650} \times 70 \approx 21$
Number from French
$=\frac{186}{650} \times 70 \approx 20$
This only tells us 'how many' to take. Take a random sample from each
Language.

S2: Grouped Frequency

To be able to group data into a grouped frequency table
Draw and interpret a frequency polygon
Find mean from a frequency table

S2.3 Find mean from a frequency table e.g. find the mean from this table.		The mean is found by adding up all the numbers and dividing by how many numbers there are. The total amount of goals can be worked by multiplying goals (x) by the frequency (f), to give fx .		
Goals (x)	Frequency (f)			
0	2	Goals (x)	Frequency (f)	fx
1	2	0	Frequr	$0 \times 2=0$
2	5	1	2	$1 \times 2=2$
	10	2	5	$2 \times 5=10$
		3	1	$3 \times 1=3$
			10	15
		The total There we $15 \div 10=$	umber of goa 10 football .5 , so the mean	is 15 . mes. is 1.5 .

S2: Grouped Frequency

Find median from a frequency table
Find range from a frequency table
Find the mode from a frequency table
Construct a scatter graph

S2: Grouped Frequency

Identify the correlation of a scatter graph
Describe the relationship presented by a scatter graph

2.7 Identify the correlation of a scatter graph e.g. sketch a scatter graph showing positive correlation and a scatter graph showing negative correlation.	Graphs can either have positive correlation, negative correlation or no correlation. Positive correlation means as one variable increases, so does the Negative correlation means as one variable increases, the other decreases.

	No correlation means there is no connection between the two
2.8 Describe the relationship presented by a scatter graph e.g. describe the relationship shown in this scatter graph.	The relationship presented by a scatter graph is described by its correlation. It is important that you mention both variables in your description of the relationship. There is a positive correlation between sales of ice cream and the temperature, so temperatures rises so does the sale of ice cream.

S2: Grouped Frequency

Find Draw a line of best fit for a scatter graph
Use a scatter graph to estimate results
Estimate the mean from a grouped frequency table

2.9 Draw a line of best fit for a scatter graph. e.g. draw a line of best fit for positive and negative correlation.	A line of best fit is a sensible straight line that goes as centrally as possible through the coordinates plotted. There should roughly be the same
2.10 Use a scatter graph to estimate results e.g. estimate how many umbrellas will be sold given 3 mm of rainfall?	Estimate results using the line of best fit. Find 3 mm of rainfall on the graph. Draw a line going up from 3 mm , then draw a line across to the y axis.

2.12
Estimate the mean
from a grouped frequency
table.
e.g. estimate the mean
from this table.
Minutes Late (m) Frequency $0<\mathrm{m} \leq 4$ 11 $4<\mathrm{m} \leq 8$ 13 $8<\mathrm{m} \leq 12$ 7 $12<\mathrm{m} \leq 16$ 9 $16<\mathrm{m} \leq 20$ 4

We don't know the exact value of each item of data in each group.

The best estimate we can make is to use the midpoint of each group.

Minutes Late (m)	Frequency	Midpoint
$0<\mathrm{m} \leq 4$	11	2
$4<\mathrm{m} \leq 8$	13	6
$8<\mathrm{m} \leq 12$	7	10
$12<\mathrm{m} \leq 16$	9	14
$16<\mathrm{m} \leq 20$	4	18

The total number of minutes late can be found by multiplying the frequencies by the midpoints.

Minutes Late (m)	Frequency	Midpoint	$\mathrm{mp} \times \mathrm{f}$
$0<\mathrm{m} \leq 4$	11	2	22
$4<\mathrm{m} \leq 8$	13	6	78
$8<\mathrm{m} \leq 12$	7	10	70
$12<\mathrm{m} \leq 16$	9	14	126
$16<\mathrm{m} \leq 20$	4	18	72
	44		368

The estimate of the mean is calculated by dividing the total minutes late by the total number of trains (total frequency).

Mean $\approx \frac{368}{44} \approx 8.4$ minutes.

S2: Grouped Frequency

Identify the modal class of a grouped frequency table
Identify the class containing the median from a grouped
frequency table

2.13		The modal class is the group with the highest frequency.
Identify the modal class of a grouped frequency table.		
e.g. find the modal class from this frequency table.		The group with the highest frequency is $4<\mathrm{m} \leq 8$ which occurs 13 times.
Minutes Late (m)	Frequency	The modal class is $4<\mathrm{m} \leq 8$.
$0<m \leq 4$	11	
$8<m \leq 12$	7	
$\frac{12<m \leq 16}{16<m \leq 20}$	9	
2.14 Identify the class containing the median from a grouped frequency table		The median value is the middle value when all items are in order.
		Median $=\frac{n+1}{2}$ the value.
e.g. find the class		n (total frequency) is 44.
		$\text { Median }=\frac{44+1}{2}=\frac{45}{2}=22.5^{\text {th }} \text { value } .$
containing the median from this table.		
		The median is halfway between the 23rd and 24th items of data.
Minutes Late (m)	Frequency	
$0<m \leq 4$	11	
$4<m \leq 8$	13	Using cumulative frequency, the $24^{\text {th }}$ item is at the end of the $4<\mathrm{m} \leq 8$ class, so the $23^{\text {rd }}$ item is also in that class.
$8<m \leq 12$	7	
$16<m \leq 20$	4	
		The median value is in the $4<\mathrm{m} \leq 8$ class.

Understand the terms extrapolation and interpolation related to scatter graphs
Calculate cumulative frequency

S2: Grouped Frequency

Plot a cumulative frequency chart
Read median and quartiles from cumulative frequency chart

S2: Grouped Frequency

Draw a box plot
Draw a box plot from a list of numbers

2.19		
Draw a box plot	A box plot is a visual representation of the median and quartiles of a set of data. To draw a box plot, the following values are needed: minimum; lower quartile; required to draw a box plot. upper quartile;	

2.19 a) Draw a box plot from a list of numbers. e.g. draw a box plot from this list of numbers: $\begin{aligned} & 9,10,10,12,13,14,17 \\ & 18,19,21,21 . \end{aligned}$	Box plots can be created from a list of numbers by finding the median, lower and upper quartiles. Minimum value $=9$. Maximum value $=21$. Median is the $\frac{n+1}{2}$ th value. $\frac{11+1}{2}=6.6^{\text {th }}$ item is 14 . Lower Quartile (LQ) is the $\frac{n+1}{4} t h$ value. $\frac{11+1}{4}=3.3^{\text {rd }}$ item is 10 . Upper Quartile (UQ) is the $\frac{3(n+1)}{4}$ th value. $\frac{3(11+1)}{4}=9.9^{\text {th }}$ item is 19 .

S2: Grouped Frequency

Drawing a box plot from a cumulative frequency graph
Compare distributions displayed as box plots by comparing the median and the interquartile range in context

S2: Grouped Frequency

Know how to calculate frequency density for a histogram of unequal widths
Calculate frequencies from a histogram of unequal widths

S3: Probability

Calculate the theoretical probability of an event
Use the exhaustive rule of probability,
Use a sample space to find the probability of a combined event
Use the property that the sum of mutually exclusive probabilities is 1

S3.1 Calculate the theoretical probability of an event e.g. What is the theoretical probability of rolling a 6 on a single die?	- Calculate probability $P(\text { event })=\frac{\text { No. of outcomes which give the event }}{\text { Total number of outcomes }}$ Probability of rolling a 6 There is only one 6 on the die There are 6 numbers on the die $P(6)=\frac{1}{6}$	S3.3 Use a sample space to find the probability of a combined event e.g. A dice is rolled and a spinner is spun and the scores are added together. Create a sample space diagram to show all possible outcomes from spinning a spinner and rolling a dice.								
					Dice					
				+	1	2	3	4	5	6
			$\begin{aligned} & \dot{~} \\ & \text { ट̄ } \\ & \text { in } \end{aligned}$	1	2	3	4	5	6	7
				2	3	4	5	6	7	8
				3	4	5	6	7	8	9
S3.2 Use the exhaustive rule of probability, the probability of an event + the probability of that event not happening = 1				4	5	6	7	8	9	10
	happening If P (event $)=p$ P (event NOT happening) $=1-p$	S3.4 Use the property that the sum of mutually exclusive probabilities is 1	If 2 outcomes cannot occur together they are mutually exclusive If 2 outcomes A and B are mutually exclusive $P(A)+p(B)=1$							
e.g. The probability it will rain today is 0.7 . What is the probability it won't rain today?	$\begin{aligned} & \text { e.g. } P(\text { rain })=0.7 \\ & P(\text { not rain })=1-0.7=0.3 \end{aligned}$	e.g. If outcomes A and B are mutually exclusive and the probability of A occurring is 0.47 ... what is the probability of B occurring?	$\begin{gathered} 1-P(A)=P(B) \\ 1-0.47=P(B) \\ P(B)=0.53 \end{gathered}$							

S3: Probability

Calculate relative frequency
Understand the limitations and use of elative frequency
Draw a tree diagram for independent events

S3.5 Calculate relative frequency e.g. St Benedict's Football Club has won 7 matches out of the 10 this season. What is the probability they will win their next match?	$\begin{aligned} & \text { Relative frequency }= \\ & \frac{\text { Number of times outcome occurs }}{\text { Total number of trials }} \\ & =\frac{7}{10} \\ & =0.7 \end{aligned}$
S3.6 Understand the limitations and use of relative frequency e.g. Lily scored 4 out of the 10 shots during netball training. Lily says "The probability of me scoring is 40% ". Is Lily correct? How could Lily improve the accuracy of her estimate?	Yes Lily is correct. $\frac{4}{10}=40 \%$ Increase the amount of trials. The more times that an experiment has been carried out, the more reliable the relative frequency is as an estimate of the probability.

S3.7

Draw a tree diagram for
independent events
e.g. The probability Jane is late for school is 0.2 . What is the probability she is only late one day on Monday and Tuesday next week?

The probability that Jane is late $=0.2$

To find the probability of late on only one day:

$=0.16$
$=0.32$

S3: Probability

Draw a tree diagram for dependent events
Add two probabilities using the OR rule
Multiply two probabilities using the AND rule

S3.8

Draw a tree diagram for dependent events

And

S3.11
Calculate probabilities from a tree diagram
e.g. A jar consists of 21 sweets. 12 are green and 9 are blue. William picked one sweet and then picked another without replacing the first.

Draw a tree diagram to represent the experiment and find the probability that both sweets are blue.

> After 1 green sweet is
> taken, we have 20 sweets
> left of which 11 are green
> and 9 are blue.

	$\ldots-\ldots$	- (B)	$\frac{9}{21} \times \frac{12}{20}=\frac{9}{35}$
	$\frac{8}{20} \mathrm{~B}$	$(B, E$	$\frac{9}{21} \times \frac{8}{20}=\frac{8}{3}$

After 1 blue sweet is taken, we
have 20 sweets left of which 12 are green and 8 are blue.
$P($ both sweets are blue $)=P(B, B)$

$$
=\frac{9}{21} \times \frac{8}{20}=\frac{6}{35}
$$

S3.9

Add two probabilities using the OR rule.
e.g. The probability of picking a spade from a deck of cards is $\frac{1}{4}$. The probability of picking a club from a deck of cards is $\frac{1}{4}$. What is the probability of picking a spade or a club?

S3
S3. 10
Multiply two probabilities using the AND rule.
e.g. A fair die is rolled. What is the probability that the number is even and less than 4?
$P(A$ or $B)=P(A)+P(B)$
Use this addition rule to find the probability of either of two mutually exclusive events occurring.

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S} \text { or } \mathrm{C})= & \mathrm{P}(\mathrm{~S})+\mathrm{P}(\mathrm{C}) \\
\mathrm{P}(\mathrm{~S} \text { or } \mathrm{C}) & =\frac{1}{4}+\frac{1}{4} \\
& =\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

S3: Probability

Draw a Venn diagram from given information or probabilities

Use set notation

S3.12 Draw a Venn diagram from given information or probabilities. e.g. Draw a Venn diagram to show categories of "Things that fly" and "Animals" for the following; - Pig - Hot Air Balloon - Pen - Bat - Lion - Kite - Duck	1. Draw a rectangle 2. Draw two or three circles according to how many categories you have. There are two categories in the sample question: Make sure the circles overlap. 3. Write your items in the relevant circle. If items fit both categories, write those where the circles overlap (the "intersection"). 4. If you have something which doesn't fit a category (pen) write it within the rectangle but outside the circles.	S3.13 Use set notation e.g. Write the three areas shaded set notation.	U: Union of two sets. Things that are in either set A or set B \cap : Intersection of two sets. Things that are in set A and also in set B. A^{\prime} : Complement of a set. The elements not in Set A. 1. $A \cap B$ 2. $A \cup B$ 3. A^{\prime}

S3: Probability

Use intersection, union and complement with sets and Venn diagrams
Find probabilities using a Venn diagram

S3.14 Use intersection, union and complement with sets and Venn diagrams. e.g. Mr Peake asks 24 pupils in his class about their families. He sorts them into: S - Has sisters B - Has brothers He then displays his findings in a Venn diagram. (See previous page for Set Notation) 1. Means S AND B so people who have sisters and brothers - the intersection. Using this Venn diagram, work out:	2. S' means NOT S. $\cap B$Means AND B There are 12 people who do not have sisters but only 8 of those don't have a brother. $=8$

S3.15

Find probabilities using Venn diagrams
e.g. The Venn Diagram below shows if students play Football or Rugby.

A pupil is chosen at random. What is the probability:
a) They play football
b) They play football and rugby
c) The don't play either

Total number of students $=12+3+8+4=27$ This is the denominator!
a) $12+3=15$
$\frac{15}{27}$

b) $\frac{3}{27}$

c) $\frac{4}{27}$

S3: Probability

Calculate conditional probability
Use formula to prove two events are independent

S3.16	First, represent the information on a tree diagram:
Calculate conditional probability. e.g. The probability that a tennis player wins the first set of a match is $\frac{3}{5}$. If she wins the first set, the probability that she wins the second set is $\frac{9}{10}$. If she loses the first set, the probability that she wins the second set is $\frac{1}{2}$. Given that the tennis player wins the second set, find the probability that she won the first set.	Second Set P(lose first and win second) $=\frac{2}{5} \times \frac{1}{2}=\frac{2}{10}=\frac{10}{50}$ From the tree diagram, the probability of winning the second set $=\frac{27}{50}+\frac{10}{50}=\frac{37}{50}$. This means that in every 50 matches, she may win the second set 37 times (37 becomes the denominator of the conditional probability). Out of those 37 times, on 27 occasions she won the first set and on 10 occasions she lost the first set. Therefore, given that she wins the second set, the probability she won the first set is $\frac{27}{50}$. There is also a formula that can be used for conditional probaadility: $B(A$ given $B)=\frac{P(A \text { and } B)}{P(B)}=\frac{\frac{27}{37}}{50}=\frac{27}{37}$

S3. 17

Use formula to prove
two events are
independent
e.g.

You toss a coin and roll a dice. Are these events independent?

An independent event is an event that has no connection to another event's chances of happening.

Events A and B are independent if: $P(A \cap B)=P(A) \times P(B)$.
$P(5$ on the dice $)=\frac{1}{6}$
P (Heads) $=\frac{1}{2}$
$P(5$ and Head $)=\frac{1}{12}$ (a sample space would show this)
Since $\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$ they are independent.

S3: Probability

Find combinations and permutations

S3.18 Find combinations and permutations.	When you make a selection of items from a group and the order doesn't matter, it is a Combination. Like ingredients in a smoothie - they're all getting blended together!
e.g. A pizza restaurant offers a choice of toppings: ham (H), pepperoni (P), mushroom (M) and chicken (C). How many ways can two different toppings be chosen?	List the combinations: HP, HM, HC, PM, PC, MC. There are 6 combinations.
	When you select all the items in a group and the order does matter it is a Permutation. Like the code to a safe - it only works if you put the numbers in in the right order.
	List the permutations: RBW, RWB, BWR, BRW, WRB, WBR. There are 6 permutations.
e.g. A man owns three cars: 1 red, 1 blue and 1 white. How many ways can they be parked on his drive?	

