Year 10 / 11

Contents - Learning outcome 1 - Components of fitness applied in sport

1. Components of fitness
2. Components of fitness
3. Components of fitness
4. Fitness components requirements of sports
5. Fitness components requirements of sports
6. Justification of most important components of fitness
7. Collection and interpret data
8. Devising skill based fitness tests

Year 10 / 11

Contents - Learning outcome 2 - Principles of training in sport

9. SPOR - Principles of training
10. FITT principle
11. SMART goals
12. Methods of training and benefits
13. Methods of training and benefits
14. Methods of training and benefits
15. Aerobic and anaerobic

Year 10 / 11

Contents - Topic Area 3- Organising and planning a fitness training programme

16. Consideration to inform planning
17. Consideration to inform planning
18. Applying principles of training
19. Applying the principle of overload
20. Elements of an exercise programme
21. Elements of an exercise programme - components of fitness
22. Elements of an exercise programme - components of fitness
23. Elements of an exercise programme - how to monitor and adapt
24. Post programme tests
25. Achievement recognition

Year 10 / 11

Contents - Learning outcome 4 - Evaluate own performance in planning and delivery of a fitness training programme

26. Reflections on the fitness training programme
27. Strengths and area's for improvement of the fitness training programme
28. Further development suggestions for improvement to the fitness training programme

Year 10 / 11

Components of fitness

Year 10 / 11

Components of fitness

Strength	The extent to which a muscle or group of muscles can contract against a resistance.	Retraining an opponent in rugby Lifting a weight Pulling an oar through water	Handgrip dynamometer
Agility	Ability to move and change direction quickly whilst maintaining control	Weaving in-between poles in skiing Sprinting and dodging to avoid tackle in rugby Dribbling a football and changing direction to beat an opponent	Illinois agility test Shuttle run test
Balance	Ability to maintain position, this means maintaining the centre of mass over the base of support	Holding a handstand or head stand Holding a position in dance Balance on edge of platform in a high dive	Standing stork test
Flexibility	The range of movement possible at a joint	Splits in gymnastics Stretching to save a ball in football Perform a straddle of pike	Sit and reach Trunk flexion

Year 10 / 11

Components of fitness

Coordination	Ability to use tow or more body parts together smoothly	Arms and legs to run effectively
and efficiently	Catch a ball hand and eye	
Reaction timeThe time taken form the onset of a stimulus to the start of	Start of 100 m stimulus is the gun	
	Time taken to move to return a tennis serve	
the reactive movement	Time taken to move to intercept a ball in	
	netball	

Year 10 / 11

Fitness components requirements of sport

Hockey

Cardiovascular endurance	Needed to supply oxygen to the working muscles so that a hockey player can last a whole game (70 mins)	Opponents will gain space and possible score if the performer lacks cardiovascular endurance
Muscular endurance	Repeated movements of the arms and legs through running and the arms and upper body through hitting, pushing or slapping the ball	If they have poor muscular endurance you would not be able to continue to run throughout a game of maintain your performance when passing the ball
Speed	Dribbling the ball in hockey whilst running to beat an opponent	Starting form a starting position and sprinting away with the ball from a defender. The players would be caught and tackled if they did not have speed
Agility	Hockey player performing an Indian dribble has to change direction quickly whilst in control of the ball	If they lack agility the hockey players would not be able to maintain ball control when changing direction.

Year 10 / 11

Fitness components requirements of sport

Gymnastics

| Strength | To hold you body weight when preforming a handstand |
| :--- | :--- | Holding you weight on your hands still requires strength in your | muscles and if you did not have strength you could not hold you |
| :--- |
| Muscular |
| endurance |
| To repeatedly use the same muscle when performing a |
| tumbling routine in the arms and legs | | Maintaining momentum during a somersault routine needs high |
| :--- |
| Balance |
| Flevels of muscular endurance without this you could not perform |

Year 10 / 11

Justification of 2 most important components of fitness
Gymnastics

Strength	Needed to be able to hold any position or get into position		
e.g. head stand, handstand		\quad	The gymnast needs to move into different position quickly in
:---			
control, for instance when preforming a somersault or pike			

Hockey	
Cardiovascular	Needed to be able to last the whole 70 mins and play at the
endurance	performers top level
Speed	Need to be able to beat and opponent and defend against an opponent to make a tackle

Pressured drills

Can be against time
Can be against an opponent
e.g.

Dribbling the ball around the Illinois agility course in the fastest time

Year 10 / 11

Collection and interpret data

Normative data	Data that is collected so you can compare you results. The data comes form national averages and allows the		
participant to classify themselves as excellent, good, average, or poor. Help identify weaknesses		\quad	Fitness test should be completed to the protocol and that the fitness test measure the component of fitness
:---			
Validity			
you want to measure e.g. vertical jump measures leg power not arm power			
Reliability			
Means that if the test is reliable if repeated similar results will be obtained so test conditions must be the			
same.			

Normative data 12 min copper run - if you got 2100 m as a female you would be classed as above average

	Excellent	Above Average	Average	Below Average	Poor
Male	$>2800 \mathrm{~m}$	$2500-$ 2800 m	$2300-$ 2499 m	$2200-$ 2299 m	$<2200 \mathrm{~m}$
Female	$>2100 \mathrm{~m}$	$2000-$ 2100 m	$1700-$ $1999 m$	$1600-$ 1699 m	$<1600 \mathrm{~m}$

Year 10 / 11

Devising skill based fitness tests

Test the component of fitness and the ability to carry out the desired skill.

Be clear on how the test should be carried out
Have a suitable measurement e.g. time, passes completed.

Example Hockey

Fitness component : Agility
Skill tested : dribbling
Measurement : seconds
Dribble around course as fast as you can

Example Basketball

Fitness component : Coordination
Skill tested : Shooting
Measurement : Shots made
Shoot from 5 different sports $3 \times$ each

Year 10 / 11
 SPOR - Principles of training

Specificity	Making training specific to the movements, skills and muscles that are used in the activity
e.g. a swimmer will do a lot of there training in the pool as they need to swim.	
A basketball player will do plyometric training to practice jumping for rebounding in basketball	
Progression	Gradually making training harder as it becomes too easy.
e.g. add in 2 kg of weight to weight training after 2 weeks of training	
Overload	Working harder than normal
e.g. Training at a higher heart rate intensity	
Reversibility	Use it or lose it. If you stop training, you will lose fitness an extra 10 minutes or adding an extra mile to a run.
e.g. A rugby player breaks a leg they will not be able to train for a number of months so they will lose the fitness levels they have	
developed.	
A football player suffers from an ACL they will not be able to train for a number of months so it will take a lot of training to get back to	
the same level of fitness after the injury	

Year 10 / 11
 FITT - Principle

Frequency How often the person trains
e.g. training three times a week rather than twice a week
Intensity
e.g. Working at 70% of your maximum heart rate rather than 65% of your maximum heart rate
Time
How long the person trains for
Type
e.g. Increasing the length of the exercise by 15 minutes from 30 to 45 minutes.
e.g. Circuit training and Fartlek training as the chosen type of training for the athlete.

Year 10 / 11

SMART goal

Specific	Goals should be specific to the person and make use of the muscles, movements and energy capabilities of that person
Measurable	Goals should be able to be measured and assessed
e.g. I want to be able to throw the javelin an extra 50 cm is a measured target, where as I want to throw the javelin further is not a	
menget.	
The goals should be achievable	
e.g. I want to increase my 10 km run by 1 minute during the next 12 weeks is achievable . I want to increase my 10KM run by 5	
minutes in the next 12 weeks is not.	
Realistic	Goals should be realistic for example there should be enough time for the participant to reach them. e.g. it is a goal that I can reach so that I keep my motivation
Time bound	Goals should be set over a realistic period of time.
e.g. between 6-12 weeks depending on if it is a short, medium or long term goal. But they should always be broken down into	

Year 10 / 11

Methods of training and their benefits

$\left.\begin{array}{llll}\hline \text { Method of training } & \text { Advantages } & \text { Disadvantages } \\ \hline \begin{array}{l}\text { Continuous training - An activity that can be } \\ \text { continuously repeated without suffering undue } \\ \text { fatigue }\end{array} & \begin{array}{l}\text { Little to no equipment required } \\ \text { Improves Cardiovascular endurance } \\ \text { Can be done virtually anywhere } \\ \text { Same movement is repeated over and over. }\end{array} & \begin{array}{l}\text { Can be time consuming } \\ \text { Can be boring }\end{array} \\ \text { Can cause injury due to repetitive strain } \\ \text { Does not match many sports as intensity remains } \\ \text { constant }\end{array}\right]$

Year 10 / 11

Methods of training and their benefits

Method of training	Advantages	Disadvantages
Circuit training - A series of exercises performed at work stations with periods of work and rest	There is flexibility in what is done at each station The circuit can easily be manipulated to suit performers needs The work; rest ratio can be altered easily	Quite a lot if space is required and there may be equipment needs depending on what each station requires It is hard to gauge whether the performer is working as hard as they should at the station.
Plyometric - Repeated exercises such as bounding, hopping or jumping over hurdles which are designed to create fast, powerful movements.	Effective way to improve power Requires little to no equipment	Puts stress and strain on muscles and joints Can lead to sore muscles (DOMS)
Weight /Resistance training - Training that involves working against some kind of force that resists the movement.	Can increase muscular tone and endurance using low weight, high repetition and high sets Can increase muscular strength/bulk by heavy weight, low repetition and low sets	Can cause injury with poor technique Can cause injury if lift to heavy weight Can be boring

Year 10 / 11
 Methods of training and their benefits

Method of training	Advantages	Disadvantages
High intensity interval training (HITT)	Has aerobic and anaerobic benefits Burns calories and uses fat quickly Can be completed fairly quickly Balance of work: rest ratio can be altered to suit the individual	High intensity work can lead to injury High levels of motivation are needed in the works
Can lead to dizziness or nausea		

Year 10 / 11

Aerobic exercise - Using oxygen to fuel the body during exercise

Anaerobic exercise not using oxygen to fuel the body during exercise

	Intensity	Duration	Oxygen consumption	Method of training
Aerobic	Low intensity exercise e.g., jogging, walking	Long	Enough oxygen to meet the demands of exercise	Fartlek Continuous
Anaerobic	High intensity exercise e.g. sprinting, jumping	Short usually under a minute	Not enough oxygen to meet demands of exercise	HITT Interval Plyometric Resistance

Year 10 / 11

Factors when designing a fitness training programme

1. Considerations to inform planning - Part 1 of 2

Facilities/equipment	What facilities and equipment does the performer have to complete a training programme?
How much space for they have and do they have access to technology (e.g. heart rate monitor) to monitor their	
performance.	
Safety assessment	A PAR-Q (Physical Activity Readiness Questionnaire) is used to determine if the performer is healthy enough to
undertake the programme. Injuries or illnesses may affect their participation.	
Risk Assessment	Risk assessments aim to reduce the risk to participants within the activity

Year 10 / 11

Factors when designing a fitness training programme

1. Considerations to inform planning - Part 2 of 2

\(\left.$$
\begin{array}{ll}\text { Current fitness levels/injuries } & \begin{array}{l}\text { Through fitness assessments the level of fitness of the performer is considered and used to inform the planning of } \\
\text { the programme }\end{array}
$$

Organisation \& The leader of the programme needs to be organised to ensure that the right equipment is in the right place ready for

the session, allows for variety in the programme and includes appropriate rest periods.\end{array} $$
\begin{array}{ll}\text { As part of the risk assessment the trainer must consider if the environment is checked, ready and safe for the }\end{array}
$$\right\}\)| performer | |
| :--- | :--- |
| Skills to be improved | Adding skill based fitness work will lead to improved performance in the component of fitness and the skill e.g. |
| using continuous running in football with a ball to improve fitness and stamina along with dribbling and running with | |
| the ball skills. | |

Year 10 / 11

Factors when designing a fitness training programme

1. Appling principles of training -

Specificity	Progression and Overload				Reversibility
	Frequency	Intensity	Time	Type	
Ensuring the training	As training gets easier	As the training gets easier	Increasing the	Matching the demands	Regular training to
meets the demands of	the number of sessions	the intensity of the exercise	amount of time spent	of the activity to the	prevent the benefits
the activity	per week will increase	heart rate used can be	on the activity	training used	being lost through too
e.g. running technique	e.g. increasing the	increased	e.g. increasing the	e.g. long distance	much rest or injury
developed through	number of training	e.g. increasing the intensity	time spent running	cyclist requires	e.g. training three times
carrying out continuous	sessions from three to	from 65% to 75% of the of	from 30 minutes to	muscular endurance -	or more a week each
training	four per week	the maximum heart rate	35 minutes	weight training for	week to prevent a loss
				endurance needed	of fitness

Year 10 / 11

Factors when designing a fitness training programme

1. Appling principle of overload -

Using heart rate	Using one rep maximum (1 RM)	Using Work: Rest ratio	Applying specificity
For improving cardiovascular fitness/stamina	For improving muscular endurance or muscular strength	For interval or HIIT training	All forms of training
Calculating maximal heart rate 220-age	Calculating 1 RM Lift weight once	Balancing the amount of work done with the rest period - to avoid overload and injury	Activities and exercises used in a training programme need to be specific to the needs of the
Aerobic training zone $=60-80 \%$ of maximum			participant, targeting the areas
heart rate	Younger participants should predict their 1RM from a 10RM or 5RM to avoid	HIIT session often involves 2:1 Work: Rest ratio e.g. work for	they want to improve or the body parts/fitness components
e.g. 220-16 (yr. old) $=204$	injury	30 seconds rest for 15	used in their sport.
60% of $204=122 \mathrm{bpm}$		seconds	
80% of $204=163 \mathrm{bpm}$	Muscular strength $=70-80 \%$ of 1RM		
Aerobic heart rate zone for 16 year old 122163 bpm	Muscular endurance $=40-60 \%$ of 1 RM	Work period can be increased or rest period decreased	

Year 10 / 11

Planning a fitness-based training programme

2. Elements of a programme

Warm up and cool down

 routinesCarried out at the start and end of each session to ensure that the participant are safe to take part in the activity

Includes:
Pulse raising activity
Mobility exercises
Dynamic stretches
Skill rehearsal

Activities/main content of the programme	Duration of the plan/sessions
The main content of the training session including exercises chosen, muscles used and number of rest days	A minimum of 6 weeks Usually $8-12$ weeks to allow adaptations to be seen
Exercises should match the	Length of the sessions

Activities/main content of the programme

The main content of the training
session including exercises chosen, muscles used and number of rest days

Exercises should match the demands of the sport and muscles used.

Rests between activities and required

Equipment, facilities and coaching points

All equipment needed needs to be considered to ensure it is accessible before planning

Instructions on how to do the exercise or use the equipmen are called coaching points this helps the performer to carry out the activities correctly.

Adaptation of the programme based on each session or mid-term testing

Adaptability of the programme to ensure the goals of the programme are met

Using an indoor treadmill rather than outdoor running when the weather is bad Using free weights when the fixed weight machine is broken

Year 10 / 11

Planning a fitness-based training programme

2. Elements of a programme - Target area and suitable activities (1)

Warm up and cool down routines	Specific exercises	Overload intensity	Time
Cardiovascular endurance/stamina	Cycling, swimming, jogging, walking, rowing	$60-80 \%$ of maximum heart rate (220-age)	20 minutes or more 3-4 times per week
Muscular strength	High resistance - weights, resistance machines, body weight	More than 70% of 1 RM 3 sets of 6-8 repetitions	30 minutes plus
Muscular endurance	Low resistance - weights, resistance machines, body weight	Less than 70% of 1 RM 3 sets of 10-15 repetitions	30 minutes plus
Agility	Shuttles or circuits involving changing direction at speed - sprinting round cones, ladder runs	Work: Rest ratio 1:3 e.g. 30 seconds work:90 seconds rest	30 minute sessions 2-3 times per week

Year 10 / 11

Planning a fitness-based training programme

2. Elements of a programme - Target area and suitable activities (2)

Warm up and cool down routines	Specific exercises	Overload intensity	Time
Speed	Use of speed ladders, sprints, interval sprints	Work: Rest ratio 1:3 e.g. 30 seconds work:90 seconds rest	30 minute sessions
Power	Interval training - high intensity, quick activities, acceleration sprint training \& plyometric training - box and hurdle jumps	Box jumps - 3-6 sets of 8-15 repetitions Sprints - W:R 1:3 e.g. 30 seconds work:90 seconds rest	30 minutes or more per session
Balance, flexibility, co-ordination or reaction time	Circuit training to include flexibility stretches, co-ordination drills and balance exercise	2-3 sets of 12 repetitions 30 second recovery between intervals	30 minutes or more per session

Year 10 / 11

Planning a fitness-based training

programme

2. Elements of a programme - How to monitor progress and adapt a programme

Year 10 / 11
Recording results from a fitness training programme

3. Post-programme tests

Skill and fitness based tests

Carried out at the start, middle and end of the programme

Scores compared between the start and end

Conclusions can then be
made and achievements
recognised

If final tests do not show an improvement the goals may need to be reset and training may need to continue for longer.

Year 10 / 11

Recording results from a fitness training programme

3. Achievement recognition

Recognising the achievements of a programme is important to motivate the performer for further and future programmes and performance

Consider each of the parts of the strength programme

Consider the fitness tests results before, during and after the training programme - have they improved, stayed the same or got worse?

Consider the skill test results before, during and after the training programme - have they improved, stayed the same or got worse?

Provide a conclusion for the overall effect of the programme on the performer - provide suggestions of what they could do next time to have a greater effect

Year 10 / 11

Reflections on the fitness training programme

Goals Set	Does you programme achieve the SMART goals set?
	Do the measures you used allow you to make a judgement
Training methods used	Has the training method helped you achieve your goals? If so why ? If not why?
Fitness component links	Look at your fitness test scores you complete after the programme do they show an improvement? correctly to skill test
	Yes they do explain why ?
	No they don't explain why?

Year 10 / 11

Strengths and area's for improvement of the fitness training programme

Has the programme been a success or failure?

What areas of the programme went well?
Did they enjoy it? Did it motivate them? Was the intensity appropriate

What aspects of the programme did not work well?
Did the participant find it hard to complete?
Did they lack motivation?
Was then training frequent enough?

```
Year 10 / 11
```

Further development suggestions for improvement to the fitness training programme

Results	Were the results acceptable?
	If not, why not?
	How could you improve the outcomes / results
Boredom / Variety	Was the programme boring?
	If so, how could you improve this?
	What could you change to make improvements to programme?
Intensity	Was the intensity too easy or hard?
	How could you adjust the intensity?

