Chemistry Paper 1 (Triple)

CONTENTS

- 1. Atoms, elements, compounds and mixtures
- 2. Structure of the atom
- 3. Separating mixtures
- 4. History of the atom
- 5. Comparing atomic models
- 6. lonic and covalent bonding
- 7. Giant covalent bonding
- 8. Metallic bonding and alloys
- 9. Quantitative chemistry
- 10. Acids and alkalis
- 11. Reactions of acids to make a salt
- 12. Strong and weak acids
- 13. Energy changes
- 14. Calculating bond enthalpy
- 15. The development of the periodic table
- 16. Chemical formulae
- 17. Reactions of group 1, group 7 and group 0
- 18. Reactivity of metals

- 19. Properties of ionic compounds and simple molecules
- 20. Structure of giant covalent substances
- 21. Properties of giant covalent substances
- 22. Nanoparticles
- 23. Structure of metals and alloys
- 24. Properties of metallic bonding and alloys
- 25. Polymers
- 26. Fullerenes and transition metals
- 27. Electrolysis
- 28. Processes occurring during electrolysis
- 29. Electrolysis as an industrial process
- 30. Extraction of aluminium using electrolysis
- 31. Batteries and fuel cells
- 32. Required practicals 1 making a salt and electrolysis
- 33. Required practicals 2 energy changes
- 34. Required practicals 3 titration

1. Atoms, Elements, Compounds and Mixtures

Keyword	Definition
Atom	smallest part of an element
Element	made up of only one type of atom
Compound	made from at least two elements, chemically combined
Mixture	made of two or more elements or compounds not chemically combined together

Radius of an atom = 0.1nm (1 x 10^{-10} m).

Radius of a nucleus is less than 1/10 000 of that of an atom. This is 1×10^{-14} m.

Atoms are neutral (no electrical charge) because: -The number of protons and electrons are the same. -The charges cancel out	
Atomic number = Proton number	
Mass number = Number of protons and neutrons	
Number of electrons = Number of protons	

Structure of the atom (Nuclear model)

Subatomic particle	Relative charge	Relative mass
Proton	+1	1
Neutron	0	1
Electron	-1	1/1840

2. Structure of the Atom

= bottom number

Neutron = top number – bottom number

Isotopes:

Atoms of the same element that have different numbers of neutrons but the same number of protons and electrons.

They have the same chemical properties but different physical properties.

	39 Ar	38 Ar	
	18	18	
18 protons		18 proto	ons
18 electrons		18 elect	trons
21 neutrons		20 neut	rons

Electronic Configuration

Proton

Electrons are arranged in shells.

Electron = bottom number

 1^{st} shell – maximum of 2 electrons

2nd shell - maximum of 8 electrons

3rd shell - maximum of 8 electrons

Calculating Relative Isotopic Abundance

Mass number	Abundance (%)
39	93.1
41	6.9

$$= (39 \times 93.1) + (41 \times 6.9)$$

93.1 + 6.9

= 39.1

3. Separating Mixtures

Process	Filtration	Distillation	Fractional distillation	Chromatography
Diagram			Gases ↓ Petrol Crude oil → Bitumen	
Physical property	Difference in solubility	Difference in boiling points	Difference in boiling points	Difference in solubility
Example	Sand and salt	Ink and water	Ink, water and oil	Different colours in dyes

4. History of the Atom

Atomic model	Plum pudding model		Nuclear model		
Diagram	Positive + \bigcirc + \bigcirc + + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + + \bigcirc + \bigcirc + + \bigcirc + \bigcirc + + \bigcirc + \bigcirc	Alpha particle	Elec	tron	Proton
Discovery	Electron The atom is a ball of positive charge with negative electrons embedded in it.	Positive nucleus in the centre of the atom Positively charged alpha particles were fired at thin gold foil. Most alpha particles went straight through the foil. A few were scattered in different directions by the atoms in the foil. It showed that the mass of an atom was in the centre (the nucleus) and the nucleus was positively charged.	Electrons occupy shells Electrons are at specific distances from the nucleus	Neutrons Proved the existence of isotopes	 Atomic radius: 1 × 10⁻¹⁰ m Radius of a nucleus is less than 1/10 000 of the radius of an atom. Most of the mass of an atom is concentrated in the nucleus. The electrons are arranged at different distances from the nucleus.
Discovere d by	Thompson	Rutherford	Bohr	Chadwick	nucieus.

6. Ionic and Covalent Bonding

Ionic Bonding (metal & non-metal)

Structure: Giant ionic lattice

Electrons are lost or gained to achieve a full outer shell.

lonic bond: Electrostatic attraction between oppositely charged ions. lons held in a fixed lattice.

Charge of ion: +2 (loses 2 electrons) and -2 (gains 2 electrons)

Describing the formation of an ionic compound

Example 1: NaF

Na atom loses 1 electron to form Na¹⁺ ion.

F atom gains 1 electron to form F^{1-} ion

Example 2: Na₂O

Two Na atoms each lose 1 electron to form two Na¹⁺ ions. One O atom gains 2 electrons to form O^{2-} ion.

Covalent Bonding (2 x non-metals)

Covalent bond: Pairs of electrons are shared between the atoms.

Sharing one pair of electrons = single bond

Sharing two pairs of electrons = double bond

Simple Molecules

(2 x non-metals, covalent bonding)

Simple molecules (small molecules) e.g. H₂, Cl₂, O₂, N₂, HC*I*, H₂O

7. Giant Covalent Bonding

	Diamond	Graphite	Silicon dioxide
Bonding	Giant covalent	Giant covalent	Giant covalent
Made of	Carbon	Carbon	Silicon and oxygen
Structure	Each carbon atom forms four C-C covalent bonds.	Each carbon atom forms three covalent bonds with three other carbon atoms, forming layers of hexagonal rings . The 4 th electron is delocalised	Each silicon atom forms four covalent bonds with oxygen atoms
Diagram			

8. Metallic Bonding and Alloys

Metallic Bonding

Metallic bond: Attraction

between the positive metal ion and delocalised electrons. **Structure**: Layers of metal positive ions surrounded by delocalised electrons

Alloy

Mixtures of metals with metals or a non-metal e.g. stainless steel is a mixture of iron and carbon **Structure**: Irregular layers

9. Quantitative Chemistry

Relative formula mass (RFM or M_r)

This is the mass in grams of 1 mole of the substance.

To calculate M_r (top number) you need to add up the atomic mass

(Ar) of all of the atoms in the molecule.

Example1. NaCl = *Na* + *Cl* = 23 + 35.5 = 58.5

Example 2. $MgF_2 = Mg + (2 \times F) = 24 + (2 \times 19) = 62$

% Mass of an Element in a compound

% mass of = Atomic mass of element x number of atoms an element Relative formula mass of compound X 100

Remember: part x 100

whole

Conservation of Mass

During a chemical reaction, no atoms are made, no atoms are destroyed.

Decrease in mass:

 $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$ Carbon dioxide is a gas which is a product Carbon dioxide escapes into the air.

Increase in mass:

 $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$

Mg reacts with oxygen in the air Oxygen has added to the magnesium

Concentration of a solution

Concentration $(g/dm^3) = mass (g) \div volume (dm^3)$

10. Acids and Alkalis

Acid	Chemical formula
Sulfuric acid	H ₂ SO ₄
Nitric acid	HNO ₃
Hydrochloric acid	HC/

Alkali	Chemical formula
Sodium hydroxide	NaOH
Potassium hydroxide	КОН

Acid	Salt name ending
Hydrochloric	-chloride
Nitric acid	-nitrate
Sulfuric	-sulfate

The pH Scale

It can be measured with a pH probe, or universal indicator.

Acid: pH 0-6

Neutral: pH 7

Alkali: pH 8-14

Neutralisation

Acids contain hydrogen ions (H⁺)

Alkalis contain hydroxide ions (OH-)

acid + alkali \rightarrow water

Ionic equation: H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)

11. Reactions of Acids to Make a Salt (Neutralisation)

Reaction 1	Reactions of Acids with Metals (Neutralisation)		
Rule	acid + metal → salt + hydrogen		
Example	hydrochloric acid + magnesium → magnesium chloride + hydrogen		
Reaction 2	Reactions of Acids with Metal Oxide (Neutralisation)		
Rule	acid + metal oxide \rightarrow salt + water		
Example	sulfuric acid + magnesium oxide \rightarrow magnesium sulfate + water		
Reaction 3	Reactions of Acids with Metal Hydroxide (Neutralisation)		
Rule	acid + metal hydroxide \rightarrow salt + water		
Example	nitric acid + magnesium hydroxide \rightarrow magnesium nitrate + water		
Reaction 4	Reactions of Acids with Metal Carbonate (Neutralisation)		
Rule	acid + metal carbonate \rightarrow salt + water + carbon dioxide		
Example	nitric acid + magnesium carbonate \rightarrow magnesium nitrate + water + carbon dioxide		

12. Strong and Weak Acids

Strong acid

Completely ionised (breaks down) in aqueous solution.

 $\mathrm{HC} I \rightarrow \qquad H^{+} + C I^{*}$

Examples: Hydrochloric acid (HCI), nitric acid (HNO₃)

and sulfuric acid (H_2SO_4) .

Lower pH numbers (pH 1-3)

The stronger the acid, the more it ionises in solution, and the more hydrogen ions there are in the solution.

Concentrated acid

More hydrogen ions (H⁺) per volume

Weak acid

Partially ionised (breaks down) in aqueous solution.

 $CH_3COOH \rightarrow CH_3COO^- + H^+$

Examples: Ethanoic acid, citric acid and carbonic acid. Higher pH numbers (pH 4-6)

рΗ

If the hydrogen ion concentration in a solution increases by a factor of 10, the pH of the solution decreases by 1.

Volume of acid (cm ³)	рН
10	3
1000	5

13. Energy Changes

Exothermic Reaction. Energy is transferred from particles to the surroundings. Temperature increases.

Examples: Combustion, many oxidation reactions, neutralisation. **Every day uses**: self-heating cans and hand warmers.

Endothermic reaction. Energy is transferred from the surroundings to the particles. Temperature decreases.Example: Thermal decomposition and the reaction between citric

acid and sodium hydrogencarbonate.

Every day uses: sports injury packs.

Activation energy: minimum amount of energy required for the reaction to start.

14. Calculating Bond Enthalpy

Exothermic reaction.

Negative value

Total energy needed to break the bonds in the reactants Total energy needed to form the bonds in the products

Endothermic reaction.

Positive value.

Total energy needed to break the bonds in the reactants Total energy needed to form the bonds in the products

5614 - 6932= -1318

15. The Development of the Periodic Table

Newland's Periodic Table	Similarities	Mendeleev's Periodic Table
Included only the elements known at the time	Ordered elements by atomic weight	Left gaps for elements he predicted would be discovered later
Maintained a strict order of atomic weights	Missing noble gases	Swapped the order of some elements if that fitted their properties better e.g. Te and I
Every eighth element had similar properties		Elements in groups had similar properties
Was criticised by other scientists for grouping some elements with others when they were obviously very different to each other		Was seen as a curiosity to begin with by other scientists, but then as a useful tool when the predicted elements were discovered later

Mendeleev's version was **accepted** because the newly discovered elements fitted in these gaps. The properties of the elements were predicted correctly.

Modern Periodic Table

It is called a **Periodic Table** because similar properties occur at regular intervals

Elements arranged in order of atomic number (proton number)

Groups (columns): Elements with similar chemical properties

Group number = number of outer shell electrons = similar chemical properties

Period (row): Elements have the same number of shells

16. Chemical Formulae

Group number	Charge of ion formed
1	+1
2	+2
3	+3
5	-3
6	-2
7	-1

Name of ionChemical formula of
ionSulfateSO4 2-HydroxideOH 1-AmmoniumNH4 1+NitrateNO3 1-CarbonateCO3 2-

How to deduce chemical formulae

	Mg ²⁺	Br ¹⁻
Identify the number	2	1
Swap the numbers	1	2
Chemical formula	Mg Br ₂	

	NH4 ¹⁺	SO ₄ ²⁻
Identify the number	1	2
Swap the numbers	2	1
Chemical formula	(NH ₄) ₂ SO ₄	

Chemical Formulae

NaCI – 1 x Na atom and 1 x CI atom

 $H_2O - 2 x H$ atoms and 1 x O atom

 $Mg(OH)_2 - 1 x Mg$ atom, 2 x O atoms and 2 x H atoms

 $CaCO_3 - 1 \times Ca$ atom, 1 x C atom and 3 x O atoms

17. Reactions of Group 1, Group 7 and Group 0

	Group 1	Group 7	Group 0
Name	Alkali Metals	Halogens (non-metal)	Noble gases
Reactivity	Increases down the group	Decreases down the group	Unreactive (inert). Does not form ions or molecules
Reactivity explanation	The outer electron is further from the nucleus. There is less attraction between the nucleus and the outer electron. The atom loses an electron more easily.	In fluorine, outer shell greater attraction between the nucleus and the outer shell, easier to gain an electron.	Already has a full outer shell of 8 electrons (except helium which has 2). No need to react.
Trend in melting point	Decreases	Increases	Increases
Explanation for trend in melting point		Mass increases. Stronger intermolecular forces. More energy is required to break these forces	Mass increases. More energy is required
Reactions	Reaction with oxygen: $4M + O_2 \rightarrow 2M_2O$ Forms the metal oxide (M ₂ O)	Displacement: A more reactive halogen can displace a less reactive halogen from its salt	
	Reaction with chlorine: $2M + Cl_2 \rightarrow 2MCl$ Forms the metal chloride (MCl)Vigorous reactionNa = silver solid; Cl_2 = green gasReaction = orange flameProduct = white solid NaCl produced	e.g. $2KBr + Cl_2 \rightarrow 2KCl + Br_2$ Chlorine more reactive than bromine. Displacement occurs. $2KBr + l_2 \rightarrow no reaction$ lodine cannot displace bromine	
	Reaction with water: $2M + 2H_2O \rightarrow 2MOH + H_2$ Hydroxide ions (OH) make solutions alkali. Metal floats and moves. Effervescence.		1

18. Reactivity of Metals

Oxidation and Reduction (adding and losing oxygen)

Oxidation: When the metal gains oxygen to become a metal oxide.

Reduction: When the metal oxide loses oxygen to become a metal.

The Reactivity Series

Potassium	
Sodium	Extracted by
Calcium	electrolysis of a
Magnesium	molten ionic
Aluminium	compound
Carbon	
Zinc	
Iron	
Tin	Extracted from its
Lead	oxide by reduction
Hydrogen	using carbon
Copper	
Silver	
Gold	

Extraction of metals

Metals above carbon in the reactivity series: Extracted by electrolysis

Metals below carbon: Extracted from their oxides by reduction with carbon.

iron oxide + carbon \rightarrow iron + carbon dioxide The iron has been reduced – it has lost oxygen. The carbon has been oxidised.

Silver, gold and platinum: Found in the Earth as the metal itself because they are unreactive.

Oxidation and Reduction (adding and losing electrons) Oxidation: Loss of electrons. Reduction: Gain of electrons. Remember OIL RIG For example:

 $Fe^{2+} + 2e^{-} \rightarrow Fe$

The iron ion gains two electrons and becomes an iron atom. The iron has been reduced – it has gained two electrons.

19. Properties of Ionic Compounds and Simple Molecules

Property of Ionic Compounds	Explanation
High melting point	Giant ionic structure. Lots of energy needed to break strong electrostatic attraction between ions.
Conducts electricity in solution/molten	lons are mobile and carry charge.
Does not conduct electricity as a solid	lons are in a fixed lattice. lons are not mobile so cannot carry a charge

Simple Molecules

(2 x non-metals, covalent bonding) Simple molecules (small molecules)

e.g. H_2 , F_2 , CI_2 , O_2 , N_2 , HCI, H_2O , CO_2

Property of Simple Molecules	Explanation
Low melting points and	-Simple molecule
boiling points.	-Weak intermolecular
(Gas at room	forces between the
temperature)	molecules.
	-Little energy needed to
	overcome these forces.
Does not conduct	Molecules do not have
electricity	any mobile ions or
	delocalised electrons

20. Structure of Giant Covalent Substances

	Diamond	Graphite	Silicon dioxide
Bonding	Giant covalent	Giant covalent	Giant covalent
Made of	Carbon	Carbon	Silicon and oxygen
Structure	Each carbon atom forms four C-C covalent bonds.	Each carbon atom forms three covalent bonds with three other carbon atoms, forming layers of hexagonal rings . The 4 th electron is delocalised	Each silicon atom forms four covalent bonds with oxygen atoms
Diagram			

21. Comparing Properties of Giant Covalent Substances: Diamond and Graphite

22. Nanoparticles

Nanoparticles

Nanoparticles are bigger than an atom. Nanoparticles have different properties due to a **higher surface area to volume ratio.**

Advantage: smaller quantities are needed which reduces cost.

Uses: medicine for controlled drug delivery and in synthetic skin, in electronics and in cosmetics and sun creams (better coverage and prevents cell damage)

Surface area: Volume ratio

Calculation of surface area of a cube: area of cube face x 6 Calculation of volume: width x depth x height

Graphene Single layer of graphite. Made of carbon atoms. One atom thick Structure Each carbon atom forms three covalent bonds with three other carbon atoms, forming layers of hexagonal rings. The 4th electron is delocalised and carries the charge through the structure. **Property &** Conducts heat and electricity **Explanation** Explanation: One electron from each carbon atom is delocalised. The electrons are able to carry the charge through the structure. **Property &** High melting point Explanation Explanation: Lots of strong covalent bonds. Lots of energy needed to separate the carbon atoms.

23. Structure of Metals and Alloys

Metallic Bonding

Metallic bond: Attraction

between the positive metal ion and delocalised electrons. **Structure**: Layers of metal positive ions surrounded by delocalised electrons

Alloy

Mixtures of metals with metals or a non-metal e.g. stainless steel is a mixture of iron and carbon **Structure**: Irregular layers

24. Properties of Metallic Bonding and Alloys

Property of metals	Explanation
Conduct electricity	Delocalised electrons are free to move and carry the charge through the metal.
Conducts thermal energy	Delocalised electrons move Energy transferred
Strong High melting point	Strong attraction between the metal positive ion and the delocalised electrons, so lots of energy needed to overcome attraction
Bent and shaped (malleable)	Layers of atoms are able to slide over each other.

Property of alloys	Explanation
Harder than pure metals	The atoms are different sizes. Layers are distorted and cannot easily slide over each other.

25. Polymers

Keyword	Definition	
Monomer	Made of a C=C bond. An alkene	
Polymers	Large molecules linked to other atoms by strong covalent bonds.	
n	Number of monomers/repeating units	
Polymerisation	The C=C double bond in the monomer breaks open. Many monomers join together to form a long chain molecule (polymer.	
Property of polym	ers Explanation of property	

Solid at room temperature/	The intermolecular forces	
Low melting point	between polymer molecules are	
	relatively strong.	
	Lots of energy needed to break	
	bonds.	

Structure and bonding in a polymer chain

Strong covalent bonds between the atoms

Weak intermolecular forces between the chains

Name of monomer	Name of polymer
Vinyl chloride	Polyvinyl chloride
Styrene	Polystyrene
Ethene	Polyethene

26. Fullerenes and Transition Metals

Fullerenes

Fullerenes are molecules of carbon atoms with hollow shapes based on hexagonal rings of carbon atoms.

Properties: High tensile strength, electrical conductivity and conducts heat.

Uses:

Drug delivery into the body as it has a hollow structure.

Lubricants

Catalysts.

Buckminster fullerene:

Molecular formula: C₆₀ Spherical shaped **Uses:** Lubricant as they can roll over each other

Transition Metals

- Compared to group 1 metals, they are:
- -harder
- -have more than one oxidation state
- used as catalysts (lowers the activation energy

by providing an alternative route)

- form coloured compounds

27. Electrolysis

Electrolysis: The splitting of an ionic compound into its elements using electricity.

Electrolyte: A molten ionic compound or an ionic solution e.g. sodium chloride. They conduct electricity.

Electrolysis Apparatus

Remember PANIC (Positive <u>Anode Negative Is Cathode</u>)

Positive ions move to the cathode (negative electrode)

Negative ions move to the anode (positive electrode)

Reaction condition for electrolysis to occur:

In a solid, ions are not free to move.

In solution or molten, the ions are free to move and carry the charge.

28. Processes Occurring During Electrolysis

Reaction at the Anode

Non-metal ions (anions) move to the anode. Non-metal molecules are produced.

Half Equation:

Remember OIL RIG (<u>O</u>xidation <u>Is Loss Reduction Is Gain</u>)

Processes at the anode

If the anion is sulfate (SO_4^{2-}) or a nitrate (NO_3^{1-}) oxygen gas (O_2) is produced

If the non-metal ion is a halide e.g. Br^{-} , the halogen molecule will be produced (Br_2)

Reaction at the Cathode

Metal ions (cations) move to the cathode. Metal atoms are produced.

Half Equation: $Li^+ + e^- \rightarrow Li$ Lithium ion has gained 1 electron to form lithium atoms. It has been reduced. Remember OIL RIG (Oxidation Is Loss Reduction Is Gain)

Competition between two positive ions at the cathode A positive metal ion e.g. K⁺, and a positive hydrogen ion, H⁺ are both in solution.

At the cathode, hydrogen gas (H_2) is produced if the metal is more reactive than hydrogen e.g. K⁺ and H⁺ ions are in solution.

Refer to reactivity series on page **18**

29. Electrolysis as an industrial process (sodium chloride)

Mesh

Half equation for the production of sodium $Na^+ + e^- \rightarrow Na$

Mesh is used to keep the products of the electrolysis apart so the products do not react

lons pass through the mesh

Products for the electrolysis of sodium chloride

Hydrogen gas (H_2) , chlorine gas (CI_2) and sodium hydroxide (NaOH)

lons present in solution

Na⁺ and Cl⁻ (from NaCl), H⁺ and OH⁻ (from water)

How sodium hydroxide (alkali) solution is produced:

Sodium ions and hydroxide ions are left in solution Hydrogen ions are released at the negative electrode to form hydrogen gas $2 H^+ + 2 e^- \rightarrow H_2$ Chloride ions are released at the positive electrode to form chlorine gas $2 Cl^- \rightarrow Cl_2 + 2 e^-$

30. Extraction of Aluminium Using Electrolysis

Electrolysis to extract metals

Metals <u>above</u> carbon in the reactivity series – extracted from their ores using electrolysis.

Metals <u>below</u> carbon in the reactivity series – extracted from their ores using carbon. This is called reduction.

Aluminium

Aluminium ore – Bauxite (aluminium oxide, AI_2O_3) Uses of aluminium: make cars and plane and tin foil

Reaction at the cathode

Al ³⁺ + $3e^- \rightarrow Al$ Reduction

 AI^{3+} has gained 3 electrons to form AI atoms.

Expensive - Large amounts of energy are needed to melt the metal compound, and to produce electricity.

Why a molten mixture of aluminium oxide is used: Mixed with cryolite. This lowers the melting point, so less energy is needed.

Carbon anodes replaced because the carbon anode reacts with oxygen produced at the anode. The anode fizzles away as CO_2 is produced.

Reaction at the anode $2O^{2-} \rightarrow O_2 + 4e$ OxidationTwo O^{2-} ions have lost 2 electrons each to form an O_2

31. Batteries & Fuel cells

Simple cell

Most reactive metal will lose electrons (oxidation) Least reactive will gain electrons (reduction) Difference in reactivity creates electron flow which produces a voltage

Tonago		The biggest voltage occurs when the
Cell voltage		difference in the reactivity of the two
Magnesium	Increase	metals is the largest. A cell made from
Zinc	in reactivity	a magnesium electrode and a copper
Copper 🗸		electrode has a higher voltage than
		either of the other two combinations.

Fuel cells

Use hydrogen gas (fuel) and oxygen (from the air).

Hydrogen is oxidised to form water releasing electrical energy. **Benefits**: No toxic chemicals to dispose of; takes less time to refuel

Problem: Storing hydrogen. It is explosive.

Fuel cells Half Equations

Cathode:	$2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$
Anode:	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$
Overall equation:	$2H_2 + O_2 \rightarrow 2H_2O$

Battery – 2 or more cells together

Non-rechargeable cells and batteries - the chemical reactions stop when one of the reactants has been used up e.g. alkali batteries. Irreversible reaction
Benefits: Cheap to manufacture
Problem: Contains toxic metals which cause issues with disposal

Battery – 2 or more cells together Rechargeable cells and batteries - Reversible reaction Benefits: recharged many times before being recycled, reducing the use of resources Problem: Costs more to manufacture

Batteries vs Electrolysis

Electrolysis uses electricity to produce a chemical reaction Chemical cells (batteries) use a chemical reaction to produce electric **voltmeter**

31

32. Required Practicals 1: Making a salt and Electrolysis

Making a soluble salt

- 1. Add excess copper oxide to sulfuric acid in a beaker
- 2. Stir using a stirring rod
- 3. Filter using a funnel and filter paper into a conical flask.
- 4. Evaporate the water from the copper sulfate solution in an evaporating dish using gentle heat until half the volume is left.
- 5. Leave on windowsill to form crystals.

6. Pat dry crystals.

Reasoning for the steps

- Step 1: Excess metal oxide used so that all the acid reacts.
- Step 2: Reaction stirred so all the chemicals react.
- Step 3: Removal of excess copper oxide. Excess copper oxide

used as it is easier to remove than excess acid

Step 4: Slow this step down by using a water bath

Observations:

Black solid (copper oxide) is left in the filter paper Colour change

Electrolysis of aqueous solutions

Cathode: Metal attracted. Metal atoms are formed.

If the **metal is more reactive than hydrogen**, the metal ion will stay in solution and hydrogen ions will attract to the cathode, producing hydrogen gas

Anode: If the anion is sulfate (SO_4^{2-}) or a nitrate (NO_3^{1-}) oxygen gas (O_2) is produced

33. Required Practicals 2 – Energy Changes

Reacting two solutions, e.g. acid and alkali

1. Place the polystyrene cup inside the glass beaker

2. Using a measuring cylinder, measure 25 cm³ of acid

3. Add to polystyrene cup.

4.Record the temperature of the acid using a thermometer.
5.Add 5cm³ of alkali to the polystyrene cup and record the temperature obtained.

6.Repeat with 5cm³ of alkali until 40 cm3 of alkali has been added

IV: Volume of alkali

DV: Temperature of reaction mixture

CV: Type of acid and alkali, volume of acid

To improve the accuracy

Use polystyrene cup

Add a lid

Repeat the experiment and calculate the mean ignoring anomalous results

Valid results: Repeat 3 times, identify the anomalous results, calculate the mean

Reacting a solid with a solution, e.g. metal and solution

1.Place the polystyrene cup inside the glass beaker to make it more stable.
2.Using a measuring cylinder, measure 25 cm³ of copper sulfate solution
3.Place the solution in a polystyrene cup.
4.Record the temperature of the solution using a thermometer.
5.Using a balance, weigh out 1g zinc powder

6.Add the zinc powder and record the temperature.

7.Repeat steps 1-6 with different masses of zinc powder

IV: Mass of metal

DV: Temperature of reaction mixture

CV: Concentration and volume of copper sulfate solution

34. Required Practicals 3 - Titration

Titration of a strong acid and an alkali

 Set up equipment as shown in diagram.
 In the conical flask add 25 cm³ of the alkali using a pipette with a few drops of phenolphthalein indicator.

3. Add the acid from the burette into the conical flask, swirling the conical flask until the colour changes.

4. Record volume of acid.

5. Repeat steps 2-4 until you have 3 concordant titres (within 0.1 cm^3 of each other).

6. Calculate the mean titre.

The acid and the alkali can be in either glass vessel (burette or conical flask).

Pipette – exactly measures out 25 cm³ Burette – volume varies Concentration (mol/dm³) = moles / volume

How to improve the accuracy:

- Swirl the solution.
- Use a white tile under the flask.
- Add the acid dropwise near the endpoint.
- Repeat and calculate mean.

Reasons why a burette is used:

can add the acid in small increments
can measure variable volumes
more accurate than a measuring cylinder

Chemistry Paper 2 (Triple)

CONTENTS

35. Rates of reaction 36. Rates of reaction graphs 37. Rates of reaction and equilibrium 38. Evolution of the atmosphere 39. Greenhouse effect 40. Polluting our atmosphere 41. Further quantitative chemistry 1 (paper 1) 42. Further quantitative chemistry 2 (paper 1) 43. Further quantitative chemistry 3 (paper 1) 44. Further quantitative chemistry 4 (paper 1) 45. Alkanes 46. Fractional distillation of crude oil 47. Combustion and cracking 48. Alkenes 49. Alcohols 50. Carboxylic acids and esters 51. Polymerisation 52. Mixtures and test for gases and test for water 53. Chromatography 54. Chemical tests for positive ions 55. Chemical tests for negative ions 56. Potable water 57. Saving resources 58. Copper extraction and corrosion 59. Alloys and their uses 60. Different materials 61. Fertilisers 62. Making a fertiliser 63. Haber process 64. Required practicals 4 – rates of reaction 65. Required practicals 5 – chromatography, potable water and test for ions 66. Maths in science 1 67. Maths in science 2

35. Rates of Reaction

Explaining the rate of reaction in terms of particles

Collision theory	Chemical reactions can occur only when reacting particles collide with each other and with sufficient energy.	
Activation energy	The minimum amount of energy that particles must have to react energy.	
Factors that affect the rate of a reaction	Concentration; Temperature Pressure; Catalyst Surface area	

The higher the <u>temperature</u> , particles move faster,			
The higher the <u>concentration/press</u> more particles in a given volume,	sure,	🗕 r f	the faster the rate of eaction due to a higher requency of successful
The higher the <u>surface</u> area, more area for the reactants to coll	ide,	c	collisions.

Measure the rate of reaction by:	Equipment needed: Stop clock Balance or measuring cylinder/gas syringe
	 a) Loss of mass of the reactants (use a balance) b) Volume of gas produced (use a gas syringe or upturned measuring cylinder) c) Time taken for the solution to become cloudy (place conical flask on cross and watch it disappear)

36. Rates of Reaction Graphs

Calculating average rate

Calculating the rate at a specific time

0 Time from start of reaction

37. Rates of Reaction and Equilibrium

Catalysts increase the rate of reaction by providing a different pathway for the reaction that has a lower activation energy. They reduce energy costs.

Catalysts are not included in the chemical equation for the reaction.

Biological catalyst: enzyme

Anhydrous	+	water
copper sulfate		
(white)		

Hydrated

copper sulfate

(blue)

Closed system	When reactants or products cannot enter or leave the system		
What does it mean by equilibrium?	The rate of the forward and reverse reaction is the same. The concentrations of reactants and products are constant. It is a closed system		
Equilibrium and temperature	Increase in temperature – reaction moves in the endothermic direction.Decrease in temperature – reaction moves in the exothermic direction.		
Equilibrium and pressure	Increase in pressure – reaction moves to the side of the fewer moles. Decrease in pressure – reaction moves to the side of the most moles.		
Equilibrium and concentration	Increase in concentration of a chemical– reaction moves to the opposite side to use up excess chemical. Decrease in concentration of a chemical– moves to this side to create more of this chemical.		
Equilibrium and a catalyst	No effect on the position of equilibrium. A catalyst allows the reaction to reach equilibrium faster. Increases the rate of the forward and the reverse reaction by the same amount.		

38. Evolution of th	ie Atmosphere	
- Corro		
Volcanoes released water vapour (H_2O) , carbon dioxide (CO_2) , methane (CH_4) , ammonia (NH_3) . Volcanoes were a source of nitrogen. Not certain of exact % of each gas as there was no evidence	Temperature cooled down. Water vapour condensed to form oceans	Methane reacted with oxygen to form carbon dioxide and water. Ammonia reacted with oxygen to form nitrogen and water. Today's atmosphere: •78 % Nitrogen (N ₂) •21 % oxygen (O ₂)
Reasons why O ₂ levels increased	Algae and plants began to photosynthesise, producing oxygenOxygen levels increased, allowing animals to evolve.	
Reasons why CO ₂ levels decreased	 Absorbed by oceans. Locked up as sedimentary rocks and fossil fuels. Used in photosynthesis to produce oxygen 	
 How coal was formed fro Carbon dioxide was used Trees die and are compti 	m carbon dioxide present in the early atmosphere: d during photosynthesis by trees ressed over millions of years	38

39. Greenhouse effect

Greenhouse Gases

•Water vapour (H₂O)

•Carbon dioxide (CO₂)

•Methane (CH_4)

Effects of Global Climate Change

Sea level rise, which may cause flooding and increased coastal erosion

More frequent and severe storms

Changes to the distribution of wildlife species

Human Activities Which Increase Greenhouse Gases

Combustion of fossil fuels releasing more carbon dioxide

Deforestation leading to less trees so less photosynthesis occurring

More animal farming (digestion, waste decomposition) so more methane released

Decomposition of rubbish in landfill sites so more methane released)

40. Polluting our Atmosphere

Pollutant	How it is made	Effect on health/environment
Sulfur dioxide (SO ₂)	Sulfur in fossil fuels reactions with oxygen to form sulphur dioxide.	Cause respiratory problems in humans and causes acid rain. Acid rain damages plants and buildings.
Carbon monoxide (CO)	Incomplete combustion of hydrocarbons.	A toxic gas which causes death.
Carbon particulates (unburned hydrocarbons)	Incomplete combustion of hydrocarbons.	Causes global dimming and damages lungs.
Oxides of nitrogen (NO _x)	Made from nitrogen and oxygen in air reacting at a high temperature in a car engine.	Causes respiratory problems in humans and cause acid rain.

Carbon Footprint	The total amount of carbon dioxide and other greenhouse gases emitted over the full life cycle of a product, service or event.
How to Reduce the Carbon Footprint	 Increased use of alternative energy supplies e.g. wind Use energy efficient appliances Carbon capture and storage (CCS)
Problems on Reducing the Carbon Footprint	 Lifestyle changes e.g. using public transport Economic considerations e.g. can countries afford to build more wind turbines?

41. Further Quantitative Chemistry 1: Equations and definitions

Mole	Mole= mass (g) / relative formula mass Mole = mass (g) /relative atomic mass	High atom economy Less wasted products and
Avogadro's Number	6.02x10 ²³ The number of particles (atoms, ions or electrons) in one mole of substance.	better economically
Atom Economy	Atom economy = <u>RFM of desired product</u> x 100 RFM of ALL the reactants	Percentage yield Less than 100 % yield due
Percentage yield	% yield = <u>actual mass (g)</u> x 100 theoretical mass (g)	to: •the reaction may not go to
Volume	÷ 1000 cm ³ → dm ³	completion because it is reversible
Concentration	Concentration (mol/dm ³) = moles/ volume (dm ³) Concentration (g/dm ³) = mass (g) / volume (dm ³)	 some of the product may be lost when it is separated from the
Gas volume	 1 mole of gas occupies 24 dm³ 0.5 moles of gas occupies 24 x 0.5 dm³= 12 dm³ Use balanced symbol equation to deduce mole ratios. 	•reaction mixture

42. Further Quantitative Chemistry 2: Limiting reactants and Theoretical Yield

Limiting Reactants

The reactant that is completely used up is called the limiting reactant because it limits the amount of products.

For example: 3 g of \underline{Mg} react with 7 g of $\underline{O_2}$. Which is the limiting reagent?

	2 <u>Mg</u>	+	<u>O</u> 2	\rightarrow 2MgO	
Mass	3 g				
Mr	24				
(do	on't include	big 2)			
Moles	3/24=0.1	25	0.125/2	= 0.0625	
Ratio		2 Mg :1	O ₂		

O₂ is the limiting reactant as there is only 0.0625 moles. Once the oxygen has reacted, the reaction is over.

Theoretical Yield Calculation

128 grams of <u>hydrogen peroxide</u> break down into water and oxygen. What mass of <u>oxygen</u> is produced?

	$2H_2O_2$	→ 2H ₂ O +	+ <u>O</u> 2
Mass	128 g	▲	60.2g
Mr	34		32
(do	on't include big 2)		
Moles	128/34=3.76		3.76/2 = 1.88
Ratio		2 H ₂ O ₂ : 1 O ₂	

- a) Underline the 2 substances from the question in the equation.
- b) Add the information from the question under mass, Mr and moles.
- c) Use ratios (the big numbers to calculate the new moles).
- d) Follow the U-arrow to calculate new mass

43. Further Quantitative Chemistry 3: Balancing equations and Gas volumes

Example 1: Work out the balanced equation when 12 grams of magnesium reacts completely with 38.5g of HCl, to make 49.5 grams of MgCl₂ and 1 gram of H_2

:	Mg +	HCI →	MgCl ₂ +	H ₂
Step 1: work out the moles of each reactant and product.	12 g/ 24 = 0.5	38.5 g/ 38.5 = 1	49.5/99 = 0.5	1/2 = 0.5
Step 2: divide through by the smallest number	0.5/0.5=1	1/0.5 = 2	1/0.5=1	0.5/0.5=1
Step 3: write the balanced equation	Mg +	2HCI -	→ MgCl ₂	+ H ₂

Example 2: Iron chloride is produced by heating iron in chlorine gas. The equation for the reaction is:

 $\underline{\mathsf{2Fe}} + \underline{\mathsf{3Cl}}_2 \to \mathsf{2FeCl}_3$

Calculate the volume of chlorine needed to react with 14 g of iron

0.375 moles of chlorine gas made

1 mole of gas occupies 24 dm³

 $0.375 / 24 = 0.0156 \text{ dm}^3$ of chlorine gas produced

15.6 cm³ of chlorine gas produced

44. Further Quantitative Chemistry 4: Titration Calculations

QUESTION: 13.3 cm³ of 0.0500 mol/dm³ citric acid solution was needed to neutralise 25.0 cm³ of sodium hydroxide solution. The equation for the reaction is:

$$3NaOH + C_6H_8O_7 \rightarrow C_6H_5O_7Na_3 + 3H_2O$$

Calculate the concentration of the sodium hydroxide solution in mol/dm³

- 1. Identify the 2 chemicals in the question
- 2. Plug in the numbers from the question.
- 3. Convert cm^3 to dm^3

	3NaOH	C ₆ H ₈ O ₇
moles		
volume (dm ³)	0.025	0.0133
concentration (mol/dm ³)		0.05

5. Then continue working through the table via the arrows

	3NaOH		C ₆ H ₈ O ₇
moles	0.000665 x 3 =0.001995		0.0133 x 0.05 = 0.000665
volume (dm ³)	0.025		0.0133
concentration (mol/dm ³)	0.0798	↓ ↓	0.05

45. Alkanes

Hydrocarbon	Made of only hydrogen and carbon	Alkane	Molecular Formula	Displayed formula
Alkane	A hydrocarbon made of C-C single bonds.	Methane	CH ₄	н н-С-н н
Alkane General Formula	C _n H _{2n+2}			
Functional group of an alkane	C-C single bond Alkanes are saturated as all the C bonds	Ethane	C ₂ H ₆	Н Н Н-С-С-Н Н Н
Homologous series	A family of hydrocarbons with similar chemical properties who share the same	Propane	C ₃ H ₈	H H H H H H
:	general formula	Butane	C ₄ H ₁₀	H H H H

Methane

A compound A hydrocarbon Covalent bonds between the C-H atoms Homologous series: Alkanes н

н

46. Fractional Distillation of Crude Oil

Keyword	Definition
Boiling point	The temperature at which a liquid turns into a gas
Combustion	Burning in oxygen
Flammability	How easily a substance ignites (catches on fire)
Fossil fuels	(non-renewable/finite fuels) Coal, oil, natural gas
Fraction	Molecules with a similar number of carbon atoms
Viscosity	The runniness of a liquid Higher the viscosity of the liquid, the longer it will take for the liquid to flow
Volatility	How easily a liquid changes into a gas

Physical property:

Fractional distillation relies of mixtures having different **boiling points** to enable the mixture to be separated

How coal is made: Trees die and are compressed over millions of years.

How crude oil is made: Made by the decomposition of plankton buried in mud over millions of years

Coal has more carbon than oil and natural gas

Fractional distillation of crude oil

- Crude oil is heated and evaporated.
- Fractions in crude oil separate depending on their boiling point and size of fraction.
- At the top of the column, short fractions with low boiling point condense
- At the bottom of the column, long fractions with high boiling point condense

Properties of fractions as you go down the column

Boiling point - increase with increasing molecular size Viscosity - increase with increasing molecular size Flammability - decreases with increasing molecular size

47. Combustion and Cracking

	Complete combustion (FO COW)	Incomplete combustion
Reaction conditions	Lots of oxygen	Little oxygen
Reactants	Fuel and oxygen	Fuel and oxygen
Products	Carbon dioxide and water	Carbon monoxide and water
	Test for carbon dioxide: Bubble through limewater Result: Turns cloudy	Carbon monoxide is toxic

Cracking vs Distillation

Cracking Requires a catalyst

Distillation Does not require a catalyst

Cracking - Hydrocarbons can be broken down (cracked) to produce smaller, more useful molecules. Also known as thermal decomposition.

Thermal decomposition – breaking down a compound using heat.

Example:

 $C_{30}H_{62} \rightarrow$ Long alkane $C_{20}H_{42}$ + $C_{10}H_{20}$ more useful alkene shorter alkane

C₁₀H₂₀ alkene (make plastics)

Reason for cracking: Turns long hydrocarbon chains into more useful shorter hydrocarbon chains. Short alkanes are useful as they are flammable

Alkenes are used to make plastics via polymerisation (see page 24)

Catalytic Cracking

Reaction conditions: High temperature and a catalyst

Steam Cracking

Reaction conditions: High temperature

48. Alkenes

Alkene	A hydrocarbon made of C=C double bonds.
Alkane General Formula	C _n H _{2n}
Functional group of an alkane	C=C double bond Alkanes are unsaturated
Chemical test for alkene	Add bromine water Alkene = Orange to colourless Alkane = stays orange

Alkene	Molecular	Displayed formula
	Formula	
Ethene	C ₂ H ₄	H H
Propene	C ₃ H ₆	H H H H-C-C=C H H

Reactions of alke	enes
Combustion	Burn in air with smoky flames because of incomplete combustion. Makes carbon monoxide (toxic) and water.
Reaction with hydrogen	Addition reaction. It takes place in the presence of a catalyst to produce the corresponding alkane (saturated).
Reaction with water	Reaction with steam in the presence of a catalyst to produce an alcohol.
Reaction with a halogen	Addition of a halogen to an alkene produces a saturated compound with two halogen atoms in the molecule, for example ethene reacts with bromine to produce dibromoethane.

49. Alcohols

Alcohols

Functional group: –OH

Methanol, ethanol, propanol and butanol Alcohols can be represented as: CH_3CH_2OH

Reactions of alcohols

рН	Dissolve in water to form a neutral solution (pH 7, green)
Reaction with sodium	Hydrogen (H ₂) gas and a sodium salt produced
Oxidation	Use acidified potassium dichromate (oxidising agent) to make a carboxylic acid
Fermentation	sugar + yeast \rightarrow ethanol (alcohol) Catalyst: yeast
	Conditions: anaerobic and warm

50. Carboxylic Acids and Esters

Carboxylic acids

Functional group: –COOH.

Methanoic acid, ethanoic acid, propanoic acid and butanoic acid. The structures of carboxylic acids can be represented as:

CH₃COOH

Esters

Functional group: –COOR Ethyl ethanoate.

CH₃COOCH₂CH₃

51. Polymerisation

Monomer	Made of a C=C bond
Polymers	Large molecules linked to other atoms by strong covalent bonds.
n	Number of monomers/repeating units
Polymerisation	The C=C double bond in the monomer breaks open. Monomers join together to form a long chain molecule (polymer.

Addition Polymerisation

Addition polymerisation	Many small molecules, alkenes (monomers) join together to form very large molecules (polymers) e.g. poly(ethene).	
Condensation oolymerisation	Monomers with two functional groups react and join together, losing a small molecule e.g. water	
DNA	Two polymer chains, made from four different monomers called nucleotides, in the form of a double helix.	
Amino acids	Contain 2 functional groups, - NH ₂ and $-COOH$	
	Amino acids (monomers) join together to make the polymer, proteins.	
	Glucose (monomer) join together to make the polymer, starch and cellulose.	
	Sugars, starch and cellulose are carbohydrates.	

52. Mixtures, Test for Gases and Test for Water

Keyword	Definition	
Boiling point	The temperature at which a liquid turns into a gas.	
	Water has a boiling point of 100 °C	
Formulation	A mixture that has been designed as a useful product e.g. shampoo	
	Formulations include fuels, cleaning products, medicines, paints, alloys, fertilisers and foods.	
Melting point	The temperature at which a solid turns into a liquid.	
	Ice has a melting point of 0 °C	
Pure substance	A single element or compound	

Gas	Chemical test	Result
Hydrogen (H ₂)	Lit splint	Pop sound
Oxygen (O ₂)	Glowing splint	Splint relights in oxygen
Carbon Dioxide (CO ₂)	Bubble through limewater	Turns milky/cloudy
Chlorine (Cl ₂)	Damp litmus paper	Paper is bleached (white)

	Test	Result
Pure water	Boil it	Boils at exactly 100 °C
Water	Add anhydrous copper sulfate	Turns from white to blue

53. Chromatography

Chromatography can be used to separate mixtures and identify substances.

Relies on the difference in solubility (physical property) of the mixture

Mobile phase – the solvent e.g. water running up the chromatogram. Stationary phase – the paper.

Evidence that the dye is a mixture

- More than 1 spot
- In a vertical column

Substances move between the phases. If a substance is more attracted to the mobile phase, it will move further up.

The $R_{\rm f}$ value tells you how far the substance has moved, relative to the solvent.

 $R_f = distance moved by substance$

distance moved by solvent

The R_f value can be used to identify the substance.

The R_f values would be compared to the known substance.

Rf value will always be less than 1

 $R_f = b \div a$

54. Chemical Tests for Positive lons

Flame test method

1.Dip a clean nichrome wire loop into a solid sample of the compound being tested

2.Put the wire loop into the edge of the blue flame from a Bunsen burner

3.Observe and record the flame colour produced

4.Nichrome wire dipped in acid to clean wire in between tests

Wooden splints vs using nichrome wire

Wooden splints don't need cleaning

Problem with this test:

Cannot use a mixture as cannot distinguish between flame colours.

One flame colour will mask another flame colour

Metal ion	Flame colour
Lithium compounds	crimson flame
Sodium compounds	yellow flame
Potassium compounds	lilac flame
Calcium compounds	red flame
Copper compounds	green flame

Testing for metals ions

Add sodium hydroxide to the metal solution to form a precipitate (insoluble solid)

Metal ion	Precipitate colour
Al ³⁺	white precipitate (dissolves when more NaOH added)
Ca ²⁺	white precipitate
Mg ²⁺	white precipitate
Cu ²⁺	blue precipitate
Fe ²⁺	green precipitate
Fe ³⁺	red/brown precipitate

Flame emission spectroscopy

Used to identify a metal ion.

Used to ow the concentration of an ion in a solution

55. Chemical Tests for Negative Ions

lon	Chemical test	Result	
Carbonate ions (CO ₃ ²⁻)	Add hydrochloric acid to unknown carbonate.	Bubble gas through limewater Limewater turns cloudy	Instrumental analysis Advantages: Faster
Halide ions	Add acidified silver nitrate solution	CI ⁻ = white precipitate Br ⁻ = cream precipitate I ⁻ = yellow precipitate	More accurate More sensitive (smaller samples needed) Disadvantages : Machines are expensive
Sulfate ions (SO ₄ ²⁻)	Add acidified barium chloride	White precipitate is formed	Specialists training required

56. Potable Water		Potable water from salty water using distillation	Potable water from rainwater/groundwater	Potable water from the sea (desalination)	Potable water from waste water (sewage)
Finite resource (non-					
renewable):	Method	1. Heat salty water.	1. Rainwater collected in	Distillation or by	1. Removal of
A source from the Earth that is		2. Water evaporates.	reservoirs.	processes that	organic matter
running out e.g. coal		 4. The vapour condenses to form potable water 	through filter beds to remove any solids.3. Sterilise to kill microbes.	such as reverse osmosis.	chemicals 2. Screening and grit removal 3.
Renewable source:			Ctoriliaina anonto		Sedimentation
A source that isn't running out e.g.			chlorine, ozone or ultra-		sewage sludge
wood			violet light.		and effluent 4. Anaerobic
Potable water.					digestion of sewage sludge
Safe to drink. Contains low					5. Aerobic
levels of dissolved salts and					biological treatment of
microbes. Not pure.					effluent.
	Issues		Reliant on rainfall	These processes require large amounts of energy.	Expensive: Needs filtering and sterilising to remove harmful bacteria. Lots of steps

57. Saving Resources

Reduces	Limits the use of raw materials, energy consumption, waste and environmental impacts (quarrying and mining for raw materials).	
Reuse	Use the item for another purpose e.g. a glass bottle is refilled.	
Recycle	Turn the item into something else e.g. plastic bottles recycled to make fleeces, scrap steel is added to iron from a blast furnace.Benefits: conserves metal ores; uses less energy; reduces waste	
Sustainable development	Development that meets the needs of current generations without compromising the resources for future generations.	
Life Cycle Assessments (LCAs)	 To assess the environmental impact (of the stages in the life of a product). Extracting the raw material Processing the raw material Manufacturing Disposal at the end of its useful life 	

58. Copper Extraction and Corrosion

Keyword	Definition	Corrosion	destruction of materials by chemical
Bioleaching	Bioleaching Uses bacteria to produce leachate solutions that contain metal compounds. Advantages: Used to clean up toxic metals from		reactions with substances in the environment e.g. rusting.
	industrial sites. Extracting copper from low grade ores. Disadvantages : Requires lots of energy in smelting and electrolysis process.	Preventing corrosion	applying a coating that acts as a barrier, such as greasing, painting or electroplating
High grade copper ore	Rock that contains enough copper that makes it economically viable to extract it.	Aluminiur	n has an oxide coating that protects
Low grade copper ore	Extract using phytomining or bioloeaching.	the metal f	from further corrosion.
Phytomining	 Grow plants on land containing copper ores. Plants are burnt to produce ash. Ash dissolved in acid to produce a solution of a copper compound. Electrolysis of solution containing the copper compound. Advantages: reduces the need to obtain new ore by mining. Conserves limited supplies of more valuable ores with higher metal content Disadvantage: Takes a long time. Large area of land 	Zinc is use scratched zinc is mo Magnesiu ships to pr	ed to galvanise iron and when provides sacrificial protection because re reactive than iron. Im blocks can be attached to steel rovide sacrificial protection.
	required.		58

59. Alloys and their Uses

Alloys	Soft metals are mixed with other metals to make them harder.
Property	Hard.
Explanation	Metals are bendy as the layers of atoms can slide over each other easily. In alloys, the particles are different sizes. Layers are distorted and cannot slide over each other.

Alloy	Use	
Bronze	Made of copper and tin. Used to make statues and decorative objects.	
Gold	Used as jewellery. Usually an alloy with silver, copper and zinc. The proportion of gold in the alloy is measured in carats.	
Brass	Made of of copper and zinc. Used to make water taps and door fittings.	
Steels	 Made of iron that contain specific amounts of carbon and other metals. High carbon steel is strong but brittle. Low carbon steel is softer and more easily shaped. Steels containing chromium and nickel (stainless steels) are hard and resistant to corrosion. 	
Aluminium	Alloys are low density and are used in aerospace manufacturing.	

60. Different Materials

Material	How it is made	
Glass (soda- lime glass)	Made by heating a mixture of sand, sodium carbonate and limestone.	
Borosilicate glass	Made from sand and boron trioxide, melts at higher temperatures than soda-lime glass	
Ceramic	Made by shaping wet clay and then heating in a furnace.	
Composites	Made of 2 materials. Material 1: Matriix or a binder surrounding the fibres of the second material e.g. a polymer. Material 2: Reinforcement e.g. wood, concrete and fibre glass.	

Polymer	Structure	
Low density polyethene (LDPE)	Tangled chains. Lots of gaps between the chains. Low melting point	
High density polyethene (HDPE)	Polymer chains are closer together so more atoms per unit volume. Higher melting point to LDPE	
Thermosetting polymers	Polymer chains with cross-links between them and so they do not melt when they are heated. Cross links are covalent bonds. Easier to recycle as it can be melted and reshaped.	
Thermo- softening polymers	Individual, tangled polymer chains and melt when they are heated. No cross links. Can be remoulded.	

61. Fertilisers

Use of fertilisers	To make plants grow better and quicker
Fertilisers	Compounds of nitrogen, phosphorus and potassium NPK fertilisers contain compounds of all three elements.
	NPK fertilisers are formulations of various salts containing appropriate percentages of the elements.
Ammonia	Used to manufacture ammonium salts and nitric acid.
Potassium chloride	Potassium sulfate and phosphate rock are obtained by mining, but phosphate rock cannot be used directly as a fertiliser because it is insoluble. Phosphate rock is treated with nitric acid to produce phosphoric acid and calcium nitrate.
Ammonia phosphate	Phosphoric acid is neutralised with ammonia to produce ammonium phosphate.
Superphosphates	Phosphate rock is treated with sulfuric acid to produce single superphosphate (a mixture of calcium phosphate and calcium sulfate) or with phosphoric acid to produce triple superphosphate (calcium phosphate).

62. Making a Fertiliser

1. Set up equipment as shown in diagram.

2. In the conical flask add 25 cm³ of the ammonia with a few drops of universal indicator.

3. Add the phosphoric acid from the burette into the conical flask, swirling the

conical flask until the colour changes to green. Record volume

- 4. Repeat steps 1-3 without the indicator adding the correct volume of acid.
- 5. Evaporate half the solution in an evaporating dish.
- 6. Leave solution by windowsill.

The acid and the ammonia can be in either glass vessel (burette or conical flask).

Pipette – exactly measures out 25 cm³

Burette - volume varies

White tile - see colour change clearly

How to improve the accuracy:

- Swirl the solution.
- Use a white tile under the flask.
- Add the solution dropwise near the endpoint.
- Repeat and calculate mean.

63. Haber Process

Used to manufacture ammonia (used to produce nitrogen-based fertilisers).

Raw materials: nitrogen and hydrogen.Nitrogen is obtained from the air.Hydrogen may be obtained from natural gas or other sources.

Catalyst: Iron Temperature: High (about 450 °C) Pressure: High (about 200 atmospheres).

The **reaction is reversible** so some of the ammonia produced breaks down into nitrogen and hydrogen.

On cooling, the ammonia liquefies and is removed. The remaining hydrogen and nitrogen are recycled.

Reaction condition	$N_2 + 3H_2 \longrightarrow 2NH_3$		
Equilibrium and temperature	Forward reaction is exothermic Increase in temperature, reaction moves to the left. Ammonia yield decreases. Decrease in temperature, reaction moves to the right. Ammonia yield increases.		
Equilibrium and pressure	3 moles on the left and 2 moles on the right.Increase in pressure, reaction moves to the side of the fewer moles. Ammonia yield increases.Decrease in pressure, reaction moves to the side of the greater moles. Ammonia yield decreases.		
Rates of reaction and temperature	Higher temperature – fast rate of reaction Expensive due to high energy costs Low temperature – slow rate of reaction. Slower turnover of product		
Rates of reaction and pressure	Higher pressure – fast rate of reaction Expensive due to maintaining high pressure Low pressure – slow rate of reaction. Slower turnover of product		

64. Required practicals 4: Rates of Reaction

Measuring the rate of reaction by collecting a gas

Method

- 1. Set up equipment as shown in diagram.
- Add 5 cm magnesium strip and 30 cm³ of a highly concentrated acid.
- 3. Collect gas for 1 minute.
- 4. Repeat steps 1-3 with different concentrations of acid
- IV: concentration of acid
- DV: volume of gas collected in 1 minute
- **CV**: volume and type of acid, length of magnesium strip, time period of gas collection.

Measuring the rate of reaction by the formation of a

precipitate

Method

- 1. Place conical flask on a black cross
- 2. Add sodium thiosulfate and hydrochloric acid to the flask.
- 3. Time how long it take for the cross to disappear.
- 4. Repeat steps 1-3 with different concentrations of sodium thiosulfate.
- IV: concentration of acid
- DV: time taken for cross to disappear
- CV: volume and type of acid

Why there is mass loss:

- Sulfur dioxide gas is made
- · Escapes into the air

Why the solution goes cloudy:

Solid sulfur is made

65. Required practicals 5: Chromatography, Test for Ions and Potable Water

Chromatography

Method:

- 1. Draw pencil start line on chromatography paper and place spot of dye on start line.
- 2. Place solvent in beaker and place chromatography paper in beaker so the paper is in solvent but solvent is below start line.
- 3. Wait for solvent to travel up the paper and mark solvent front.
- 4. Dry the paper

Measurements to take:

Measure distance between start line and centre of spot. Measure distance between start line and solvent front. Use of measurements to determine Rf value

Use of pencil – pencil is insoluble. Does not interfere with ink. Line is above solvent level – so ink travels up the paper with the rising solvent

Test for unknown ions

An unknown ionic compound will be provided.

Test for positive ion – use flame test/adding sodium hydroxide Test for negative ion – variety of tests

Method:

- Heat seawater in conical flask.
- 2. Water evaporates
- 3. Water vapour condenses
 - in delivery tube
- 4. Condenses in test tube

Chemical test	Test for seawater in conical flask	Test for pure water in test tube
Flame test to test for Na ⁺ ions. Dip wooden splint in each type of water and heat in blue Bunsen flame	Orange flame.	No change in colour
Test for Cl ⁻ ions. Add silver nitrate	White precipitate	No change in colour

66. Maths in Science 1

Anomalous result	A number that does not fit the pattern
Mean	Adding up a list of numbers and dividing by how many numbers are in the list. Exclude the anomalous result.
Median	The middle value when a list of numbers is put in order from smallest to largest
Mode	The most common value in a list of numbers. If two values are tied then there are two modes. If more than two values are tied then there is no mode.
Range	The largest number take away the smallest value in a set of data or written as X-Y.
Uncertainty	range ÷ 2
Surface area of a cube	(area of 1 side) x 6 sides
Volume of a cube	Width x height x depth
Area of a circle	∏ x (radius)²

Prefixes

1 kJ = 1 x 10³ J = 1000 J 1 pm = 1 x 10⁻¹² m

kilo	10 ³
centi	10 ⁻²
milli	10 ⁻³
micro	10 ⁻⁶
nano	10 ⁻⁹
pico	10 ⁻¹²

5607.376

Standard form: 5.607 x 10³
2 decimal places: 5607.38
3 significant figures: 5610

0.03581

Standard form: 3.581 x 10⁻²
2 decimal places: 0.04
3 significant figures: 0.0358

67. Maths in Science 2

Calculating percentage: (part ÷ whole) x 100

e.g. Out of 90 insects, 40 of them were ladybirds. What is

the % of ladybirds?

(40 ÷ 90) x 100 = 44 %

Calculating percentage change:

(difference ÷ starting value) x 100

(0.59 ÷ 2.22) x 100 = 26.6 %

Conc of Sucrose (M)	Mass of potato at start (g)	Mass of potato at end (g)	Change in mass (g)
0	2.22	2.81	0.59

Graphs

Proportional (α)

When the line passes through the origin

x axis = independent variable = left hand column of results table y axis = dependent variable = right hand column of results table

heart rate /mir

Categoric data: data put into groups e.g. colour of eyes Draw a bar chart

Continuous data: data that can take any value e.g. current Draw a line graph

Gradient and Graphs

1	2											3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He ^{helium} 2
7 Li	9 Be		relative atomic mass atomic symbol									11 B	12 C	14 N	16 0	19 F	20 Ne
lithium 3	beryllium 4		atomic (proton) number									^{boron}	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23 Na	24 Mg											27 Al	28 Si	31 P	32 S	35.5 CI	40 Ar
11	12											13	14	15	16	17	18
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium 23	chromium	manganese	iron	cobalt	nickel	copper	zinc	_{gallium}	germanium	arsenic	selenium	bromine	krypton
19	20	21	22		24	25	26	27	28	29	30	31	32	33	34	35	36
85	88	89	91	93	96	[98]	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	^{tin}	^{antimony}	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	[209]	[210]	[222]
Cs	Ba	La *	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	^{barium}	lanthanum	hafnium	tantalum	tungsten	rhenium	^{osmium}	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55		57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[271]	[272]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
Fr	Ra	Ac *	R f	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	109	darmstadtium 110	roentgenium 111	copernicium	113	tlerovium 114	ununpentium 115	livermorium 116	ununseptium 117	ununoctium 118

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.